Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { \pi / 2 } e ^ { x } \sin x d x =\)...

0π/2exsinxdx=\int _ { 0 } ^ { \pi / 2 } e ^ { x } \sin x d x =

A

12(eπ/21)\frac { 1 } { 2 } \left( e ^ { \pi / 2 } - 1 \right)

B

12(eπ/2+1)\frac { 1 } { 2 } \left( e ^ { \pi / 2 } + 1 \right)

C

12(1eπ/2)\frac { 1 } { 2 } \left( 1 - e ^ { \pi / 2 } \right)

D

2(eπ/2+1)2 \left( e ^ { \pi / 2 } + 1 \right)

Answer

12(eπ/2+1)\frac { 1 } { 2 } \left( e ^ { \pi / 2 } + 1 \right)

Explanation

Solution

Let I=0π/2exsinxdxI = \int _ { 0 } ^ { \pi / 2 } e ^ { x } \sin x d x

= [excosx]0π/2+0π/2excosxdx- \left[ e ^ { x } \cos x \right] _ { 0 } ^ { \pi / 2 } + \int _ { 0 } ^ { \pi / 2 } e ^ { x } \cos x d x

=[excosx]0π/2+[exsinx]0π/20π/2exsinxdx= - \left[ e ^ { x } \cos x \right] _ { 0 } ^ { \pi / 2 } + \left[ e ^ { x } \sin x \right] _ { 0 } ^ { \pi / 2 } - \int _ { 0 } ^ { \pi / 2 } e ^ { x } \sin x d x

2I=[ex(sinxcosx)]0π/2=(eπ/2+1)2 I = \left[ e ^ { x } ( \sin x - \cos x ) \right] _ { 0 } ^ { \pi / 2 } = \left( e ^ { \pi / 2 } + 1 \right)

Hence 0π/2exsinxdx=12(eπ/2+1)\int _ { 0 } ^ { \pi / 2 } e ^ { x } \sin x d x = \frac { 1 } { 2 } \left( e ^ { \pi / 2 } + 1 \right)