Question
Question: \(\int _ { 0 } ^ { \pi / 2 } e ^ { x } \sin x d x =\)...
∫0π/2exsinxdx=
A
21(eπ/2−1)
B
21(eπ/2+1)
C
21(1−eπ/2)
D
2(eπ/2+1)
Answer
21(eπ/2+1)
Explanation
Solution
Let I=∫0π/2exsinxdx
= −[excosx]0π/2+∫0π/2excosxdx
=−[excosx]0π/2+[exsinx]0π/2−∫0π/2exsinxdx
2I=[ex(sinx−cosx)]0π/2=(eπ/2+1)
Hence ∫0π/2exsinxdx=21(eπ/2+1)