Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { \pi / 2 } \frac { x + \sin x } { 1 + \cos x } d x =\)...

0π/2x+sinx1+cosxdx=\int _ { 0 } ^ { \pi / 2 } \frac { x + \sin x } { 1 + \cos x } d x =

A

log2- \log 2

B

log2\log 2

C

π2\frac { \pi } { 2 }

D

0

Answer

π2\frac { \pi } { 2 }

Explanation

Solution

0π/2x+sinx1+cosxdx=0π/2x+sinx2cos2x2dx\int _ { 0 } ^ { \pi / 2 } \frac { x + \sin x } { 1 + \cos x } d x = \int _ { 0 } ^ { \pi / 2 } \frac { x + \sin x } { 2 \cos ^ { 2 } \frac { x } { 2 } } d x

=120π/2xsec2x2dx+0π/2tanx2dx= \frac { 1 } { 2 } \int _ { 0 } ^ { \pi / 2 } x \sec ^ { 2 } \frac { x } { 2 } d x + \int _ { 0 } ^ { \pi / 2 } \tan \frac { x } { 2 } d x.

=xtanx20π/2=π2tanπ4=π2= \left| x \tan \frac { x } { 2 } \right| _ { 0 } ^ { \pi / 2 } = \frac { \pi } { 2 } \tan \frac { \pi } { 4 } = \frac { \pi } { 2 }.