Solveeit Logo

Question

Question: \(\int _ { - 10 } ^ { 20 } \left[ \cot ^ { - 1 } x \right] d x\), where [.] denotes greatest integer...

1020[cot1x]dx\int _ { - 10 } ^ { 20 } \left[ \cot ^ { - 1 } x \right] d x, where [.] denotes greatest integer function

A

30+cot1+cot330 + \cot 1 + \cot 3

B

30+cot1+cot2+cot330 + \cot 1 + \cot 2 + \cot 3

C

8 30+cot1+cot230 + \cot 1 + \cot 2

D

None of these

Answer

30+cot1+cot2+cot330 + \cot 1 + \cot 2 + \cot 3

Explanation

Solution

LetI=1020[cot1x]dxI = \int _ { - 10 } ^ { 20 } \left[ \cot ^ { - 1 } x \right] d x

we know cot1x(0,π)xR\cot ^ { - 1 } x \in ( 0 , \pi ) \forall x \in R

thus,

Hence,I=10cot33dx+cot3cot22dx+cot2cot11dx+cot1200dxI = \int _ { - 10 } ^ { \cot 3 } 3 d x + \int _ { \cot 3 } ^ { \cot 2 } 2 d x + \int _ { \cot 2 } ^ { \cot 1 } 1 d x + \int _ { \cot 1 } ^ { 20 } 0 d x =30+cot1+cot2+cot3= 30 + \cot 1 + \cot 2 + \cot 3