Solveeit Logo

Question

Question: \(\int _ { \pi / 6 } ^ { \pi / 3 } \frac { d x } { 1 + \sqrt { \cot x } }\) is...

π/6π/3dx1+cotx\int _ { \pi / 6 } ^ { \pi / 3 } \frac { d x } { 1 + \sqrt { \cot x } } is

A

π/3\pi / 3

B

π/6\pi / 6

C

π/12\pi / 12

D

π/2\pi / 2

Answer

π/12\pi / 12

Explanation

Solution

I=π/6π/3dx1+cotx=π/6π/3sinxsinx+cosxdxI = \int _ { \pi / 6 } ^ { \pi / 3 } \frac { d x } { 1 + \sqrt { \cot x } } = \int _ { \pi / 6 } ^ { \pi / 3 } \frac { \sqrt { \sin x } } { \sqrt { \sin x } + \sqrt { \cos x } } d x …..(i)

I=π/6π/3cosxcosx+sinxdxI = \int _ { \pi / 6 } ^ { \pi / 3 } \frac { \sqrt { \cos x } } { \sqrt { \cos x } + \sqrt { \sin x } } d x .....(ii)

Adding (i) and (ii),

2I=π/6π/3dx2 I = \int _ { \pi / 6 } ^ { \pi / 3 } d x ; I=12(π3π6)=π12I = \frac { 1 } { 2 } \left( \frac { \pi } { 3 } - \frac { \pi } { 6 } \right) = \frac { \pi } { 12 }.