Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { \pi / 2 } \frac { \sin x } { \sin x + \cos x } d x\) equals...

0π/2sinxsinx+cosxdx\int _ { 0 } ^ { \pi / 2 } \frac { \sin x } { \sin x + \cos x } d x equals

A

π2\frac { \pi } { 2 }

B

π3\frac { \pi } { 3 }

C

π4\frac { \pi } { 4 }

D

π6\frac { \pi } { 6 }

Answer

π4\frac { \pi } { 4 }

Explanation

Solution

I=0π/2sinxdxsinx+cosx=0π/2cosxdxcosx+sinxI = \int _ { 0 } ^ { \pi / 2 } \frac { \sin x \cdot d x } { \sin x + \cos x } = \int _ { 0 } ^ { \pi / 2 } \frac { \cos x \cdot d x } { \cos x + \sin x },

(0af(x)dx=0af(ax)dx)\left( \because \int _ { 0 } ^ { a } f ( x ) d x = \int _ { 0 } ^ { a } f ( a - x ) d x \right)

2I=0π/2dxI=π42 I = \int _ { 0 } ^ { \pi / 2 } d x \Rightarrow I = \frac { \pi } { 4 }.