Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { \pi / 2 } \frac { x \sin x \cos x } { \cos ^ { 4 } x + \sin ^ { 4 } x } d x =\)...

0π/2xsinxcosxcos4x+sin4xdx=\int _ { 0 } ^ { \pi / 2 } \frac { x \sin x \cos x } { \cos ^ { 4 } x + \sin ^ { 4 } x } d x =

A

0

B

π8\frac { \pi } { 8 }

C

π28\frac { \pi ^ { 2 } } { 8 }

D

Answer

Explanation

Solution

I=0π/2xsinxcosxcos4x+sin4xdxI = \int _ { 0 } ^ { \pi / 2 } \frac { x \sin x \cos x } { \cos ^ { 4 } x + \sin ^ { 4 } x } d x .....(i)

=0π/2(π2x)cosxsinxsin4x+cos4x= \int _ { 0 } ^ { \pi / 2 } \frac { \left( \frac { \pi } { 2 } - x \right) \cos x \sin x } { \sin ^ { 4 } x + \cos ^ { 4 } x } .....(ii)

By adding (i) and (ii), we get

2I=π20π/2cosxsinxcos4x+sin4x2 I = \frac { \pi } { 2 } \int _ { 0 } ^ { \pi / 2 } \frac { \cos x \sin x } { \cos ^ { 4 } x + \sin ^ { 4 } x }dx

I=π40π/2tanxsec2x1+tan4xdxI = \frac { \pi } { 4 } \int _ { 0 } ^ { \pi / 2 } \frac { \tan x \sec ^ { 2 } x } { 1 + \tan ^ { 4 } x } d x

Now, Put tan2x=t\tan ^ { 2 } x = t, we get

I=π80dt1+t2=π8[tan1t]0=π216I = \frac { \pi } { 8 } \int _ { 0 } ^ { \infty } \frac { d t } { 1 + t ^ { 2 } } = \frac { \pi } { 8 } \left[ \tan ^ { - 1 } t \right] _ { 0 } ^ { \infty } = \frac { \pi ^ { 2 } } { 16 } .