Question
Question: \(\int _ { 0 } ^ { \pi / 2 } \frac { x \sin x \cos x } { \cos ^ { 4 } x + \sin ^ { 4 } x } d x =\)...
∫0π/2cos4x+sin4xxsinxcosxdx=
A
0
B
8π
C
8π2
D
Answer
Explanation
Solution
I=∫0π/2cos4x+sin4xxsinxcosxdx .....(i)
=∫0π/2sin4x+cos4x(2π−x)cosxsinx .....(ii)
By adding (i) and (ii), we get
2I=2π∫0π/2cos4x+sin4xcosxsinxdx
⇒ I=4π∫0π/21+tan4xtanxsec2xdx
Now, Put tan2x=t, we get
I=8π∫0∞1+t2dt=8π[tan−1t]0∞=16π2 .