Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { 1 } f ( 1 - x ) d x\) has the same value as the integral...

01f(1x)dx\int _ { 0 } ^ { 1 } f ( 1 - x ) d x has the same value as the integral

A

01f(x)dx\int _ { 0 } ^ { 1 } f ( x ) d x

B

01f(x)dx\int _ { 0 } ^ { 1 } f ( - x ) d x

C

01f(x1)dx\int _ { 0 } ^ { 1 } f ( x - 1 ) d x

D

11f(x)dx\int _ { - 1 } ^ { 1 } f ( x ) d x

Answer

01f(x)dx\int _ { 0 } ^ { 1 } f ( x ) d x

Explanation

Solution

Put 1x=tdx=dt1 - x = t \Rightarrow - d x = d t . Also as x=0x = 0 to 1, t=1t = 1to 0

Therefore, 01f(1x)dx=10f(t)(dt)=01f(t)dt=01f(x)dx\int _ { 0 } ^ { 1 } f ( 1 - x ) d x = \int _ { 1 } ^ { 0 } f ( t ) ( - d t ) = \int _ { 0 } ^ { 1 } f ( t ) d t = \int _ { 0 } ^ { 1 } f ( x ) d x.