Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { \pi / 2 } \frac { \sin ^ { 3 / 2 } x d x } { \cos ^ { 3 / 2 } x + \sin ^ { 3 / 2 ...

0π/2sin3/2xdxcos3/2x+sin3/2x=\int _ { 0 } ^ { \pi / 2 } \frac { \sin ^ { 3 / 2 } x d x } { \cos ^ { 3 / 2 } x + \sin ^ { 3 / 2 } x } =

A

0

B

π\pi

C

π/2\pi / 2

D

π/4\pi / 4

Answer

π/4\pi / 4

Explanation

Solution

Let I=0π/2sin3/2xdxcos3/2x+sin3/2xI = \int _ { 0 } ^ { \pi / 2 } \frac { \sin ^ { 3 / 2 } x d x } { \cos ^ { 3 / 2 } x + \sin ^ { 3 / 2 } x } …..(i)

= 0π/2sin3/2(π2x)cos3/2(π2x)+sin3/2(π2x)dx\int _ { 0 } ^ { \pi / 2 } \frac { \sin ^ { 3 / 2 } \left( \frac { \pi } { 2 } - x \right) } { \cos ^ { 3 / 2 } \left( \frac { \pi } { 2 } - x \right) + \sin ^ { 3 / 2 } \left( \frac { \pi } { 2 } - x \right) } d x

= 0π/2cos3/2xdxsin3/2x+cos3/2x\int _ { 0 } ^ { \pi / 2 } \frac { \cos ^ { 3 / 2 } x d x } { \sin ^ { 3 / 2 } x + \cos ^ { 3 / 2 } x } .....(ii)

Adding (i) and (ii), we get I=120π/21dx=12[x]0π/2=π4I = \frac { 1 } { 2 } \int _ { 0 } ^ { \pi / 2 } 1 d x = \frac { 1 } { 2 } [ x ] _ { 0 } ^ { \pi / 2 } = \frac { \pi } { 4 }.