Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { \pi / 2 } \frac { \cos x - \sin x } { 1 + \sin x \cos x } d x =\)...

0π/2cosxsinx1+sinxcosxdx=\int _ { 0 } ^ { \pi / 2 } \frac { \cos x - \sin x } { 1 + \sin x \cos x } d x =

A

2

B

C

0

D

None of these

Answer

0

Explanation

Solution

0π/2cosxsinx1+sinxcosxdx=I\int _ { 0 } ^ { \pi / 2 } \frac { \cos x - \sin x } { 1 + \sin x \cos x } d x = I …..(i)

Now I=0π/2cos(π2x)sin(π2x)1+sin(π2x)cos(π2x)dxI = \int _ { 0 } ^ { \pi / 2 } \frac { \cos \left( \frac { \pi } { 2 } - x \right) - \sin \left( \frac { \pi } { 2 } - x \right) } { 1 + \sin \left( \frac { \pi } { 2 } - x \right) \cos \left( \frac { \pi } { 2 } - x \right) } d x

= 0π/2sinxcosx1+sinxcosxdx\int _ { 0 } ^ { \pi / 2 } \frac { \sin x - \cos x } { 1 + \sin x \cos x } d x .....(ii)

On adding, 2I=0I=02 I = 0 \Rightarrow I = 0.