Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { \pi } x f ( \sin x ) d x =\)...

0πxf(sinx)dx=\int _ { 0 } ^ { \pi } x f ( \sin x ) d x =

A

π0πf(sinx)dx\pi \int _ { 0 } ^ { \pi } f ( \sin x ) d x

B

π20πf(sinx)dx\frac { \pi } { 2 } \int _ { 0 } ^ { \pi } f ( \sin x ) d x

C

π20π/2f(sinx)dx\frac { \pi } { 2 } \int _ { 0 } ^ { \pi / 2 } f ( \sin x ) d x

D

None of these

Answer

π20πf(sinx)dx\frac { \pi } { 2 } \int _ { 0 } ^ { \pi } f ( \sin x ) d x

Explanation

Solution

Since f(ax)=f(x)f ( a - x ) = f ( x ).