Solveeit Logo

Question

Question: \(\int _ { - \pi / 2 } ^ { \pi / 2 } \frac { \sin x } { 1 + \cos ^ { 2 } x } e ^ { - \cos ^ { 2 } x ...

π/2π/2sinx1+cos2xecos2xdx\int _ { - \pi / 2 } ^ { \pi / 2 } \frac { \sin x } { 1 + \cos ^ { 2 } x } e ^ { - \cos ^ { 2 } x } d x is equal to

A

2e12 e ^ { - 1 }

B

1

C

0

D

None of these

Answer

0

Explanation

Solution

I=π/2π/2sinx1+cos2xecos2xdxI = \int _ { - \pi / 2 } ^ { \pi / 2 } \frac { \sin x } { 1 + \cos ^ { 2 } x } e ^ { - \cos ^ { 2 } x } d x

sinx1+cos2xecos2x\because \frac { \sin x } { 1 + \cos ^ { 2 } x } e ^ { - \cos ^ { 2 } x }is an odd function,

I=0I = 0.