Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { 3 } | 2 - x | d x\) equals...

032xdx\int _ { 0 } ^ { 3 } | 2 - x | d x equals

A

2/7

B

5/2

C

3/2

D

3/2- 3 / 2

Answer

5/2

Explanation

Solution

=02(2x)dx+23(2x)dx= \int _ { 0 } ^ { 2 } ( 2 - x ) d x + \int _ { 2 } ^ { 3 } - ( 2 - x ) d x

=02(2x)dx23(2x)dx=[2xx22]02[2xx22]23= \int _ { 0 } ^ { 2 } ( 2 - x ) d x - \int _ { 2 } ^ { 3 } ( 2 - x ) d x = \left[ 2 x - \frac { x ^ { 2 } } { 2 } \right] _ { 0 } ^ { 2 } - \left[ 2 x - \frac { x ^ { 2 } } { 2 } \right] _ { 2 } ^ { 3 }

I=[42][692(42)]\Rightarrow I = [ 4 - 2 ] - \left[ 6 - \frac { 9 } { 2 } - ( 4 - 2 ) \right] =52= \frac { 5 } { 2 }.