Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { \pi } \log \sin ^ { 2 } x d x =\)...

0πlogsin2xdx=\int _ { 0 } ^ { \pi } \log \sin ^ { 2 } x d x =

A

2πloge(12)2 \pi \log _ { e } \left( \frac { 1 } { 2 } \right)

B

πloge2+c\pi \log _ { e } 2 + c

C

π2loge(12)+c\frac { \pi } { 2 } \log _ { e } \left( \frac { 1 } { 2 } \right) + c

D

None of these

Answer

2πloge(12)2 \pi \log _ { e } \left( \frac { 1 } { 2 } \right)

Explanation

Solution

0π2logsinxdx=202π2logsinxdx=40π/2logsinxdx\int _ { 0 } ^ { \pi } 2 \log \sin x d x = 2 \int _ { 0 } ^ { 2 \frac { \pi } { 2 } } \log \sin x d x = 4 \int _ { 0 } ^ { \pi / 2 } \log \sin x d x

=4×(π2log2)=2πloge2=2πloge(12)= 4 \times \left( - \frac { \pi } { 2 } \log 2 \right) = - 2 \pi \log _ { e } 2 = 2 \pi \log _ { e } \left( \frac { 1 } { 2 } \right).