Solveeit Logo

Question

Question: \(\int _ { - \pi / 2 } ^ { \pi / 2 } \frac { \cos x } { 1 + e ^ { x } } d x =\)...

π/2π/2cosx1+exdx=\int _ { - \pi / 2 } ^ { \pi / 2 } \frac { \cos x } { 1 + e ^ { x } } d x =

A

1

B

0

C

1- 1

D

None of these

Answer

1

Explanation

Solution

I=π/2π/2cosx1+exdx=π/20cosx1+exdx+0π/2cosx1+exdxI = \int _ { - \pi / 2 } ^ { \pi / 2 } \frac { \cos x } { 1 + e ^ { x } } d x = \int _ { - \pi / 2 } ^ { 0 } \frac { \cos x } { 1 + e ^ { x } } d x + \int _ { 0 } ^ { \pi / 2 } \frac { \cos x } { 1 + e ^ { x } } d x…..(i)

Putting x=tx = - t in π/20cosx1+exdx\int _ { - \pi / 2 } ^ { 0 } \frac { \cos x } { 1 + e ^ { x } } d x, we get

I=π/20cosx1+exdx=0π/2excosx1+exdxI = \int _ { - \pi / 2 } ^ { 0 } \frac { \cos x } { 1 + e ^ { x } } d x = \int _ { 0 } ^ { \pi / 2 } \frac { e ^ { x } \cos x } { 1 + e ^ { x } } d x

I=0π/2excosx1+exdx+0π/2cosx1+exdxI = \int _ { 0 } ^ { \pi / 2 } \frac { e ^ { x } \cos x } { 1 + e ^ { x } } d x + \int _ { 0 } ^ { \pi / 2 } \frac { \cos x } { 1 + e ^ { x } } d x

=0π/2(1+ex)cosxdx(1+ex)= \int _ { 0 } ^ { \pi / 2 } \frac { \left( 1 + e ^ { x } \right) \cos x d x } { \left( 1 + e ^ { x } \right) } =0π/2cosxdx=[sinx]0π/2=1= \int _ { 0 } ^ { \pi / 2 } \cos x d x = [ \sin x ] _ { 0 } ^ { \pi / 2 } = 1 .