Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { \pi / 2 } \{ x - [ \sin x ] \} d x\) is equal to...

0π/2{x[sinx]}dx\int _ { 0 } ^ { \pi / 2 } \{ x - [ \sin x ] \} d x is equal to

A

π28\frac { \pi ^ { 2 } } { 8 }

B

π281\frac { \pi ^ { 2 } } { 8 } - 1

C

π282\frac { \pi ^ { 2 } } { 8 } - 2

D

None of these

Answer

π28\frac { \pi ^ { 2 } } { 8 }

Explanation

Solution

0π/2{x[sinx]}dx=0π/2xdx0π/2[sinx]dx\int _ { 0 } ^ { \pi / 2 } \{ x - [ \sin x ] \} d x = \int _ { 0 } ^ { \pi / 2 } x d x - \int _ { 0 } ^ { \pi / 2 } [ \sin x ] d x

=π28= \frac { \pi ^ { 2 } } { 8 }, [0π/2[sinx]dx=0]\left[ \because \int _ { 0 } ^ { \pi / 2 } [ \sin x ] d x = 0 \right] .