Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { \pi / 2 } \frac { \sqrt { \cos x } } { \sqrt { \sin x } + \sqrt { \cos x } } d x ...

0π/2cosxsinx+cosxdx=\int _ { 0 } ^ { \pi / 2 } \frac { \sqrt { \cos x } } { \sqrt { \sin x } + \sqrt { \cos x } } d x =

A

0

B

π2\frac { \pi } { 2 }

C

π4\frac { \pi } { 4 }

D

None of these

Answer

π4\frac { \pi } { 4 }

Explanation

Solution

Let I=0π/2cosxsinx+cosxdxI = \int _ { 0 } ^ { \pi / 2 } \frac { \sqrt { \cos x } } { \sqrt { \sin x } + \sqrt { \cos x } } d x .....(i)

and I=0π/2cos(π2x)sin(π2x)+cos(π2x)dxI = \int _ { 0 } ^ { \pi / 2 } \frac { \sqrt { \cos \left( \frac { \pi } { 2 } - x \right) } } { \sqrt { \sin \left( \frac { \pi } { 2 } - x \right) } + \sqrt { \cos \left( \frac { \pi } { 2 } - x \right) } } d x

I=0π/2sinxcosx+sinxdxI = \int _ { 0 } ^ { \pi / 2 } \frac { \sqrt { \sin x } } { \sqrt { \cos x + \sqrt { \sin x } } } d x …..(ii)

Adding (i) and (ii), we get

2I=0π/2(1)dx=π2I=π42 I = \int _ { 0 } ^ { \pi / 2 } ( 1 ) d x = \frac { \pi } { 2 } \Rightarrow I = \frac { \pi } { 4 } .