Question
Question: \(\int _ { 0 } ^ { \pi / 4 } \log ( 1 + \tan \theta ) d \theta =\)...
∫0π/4log(1+tanθ)dθ=
A
4πlog2
B
4πlog21
C
8πlog2
D
8πlog21
Answer
8πlog2
Explanation
Solution
I=∫0π/4log(1+tanθ)dθ ⇒ I=∫0π/4log{1+tan(4π−θ)}dθ
⇒ I = ∫0π/4log(1+1+tanθ1−tanθ)dθ
⇒ I = ∫0π/4log2dθ−∫0π/4log(1+tanθ)dθ
⇒I=21∫0π/4log2dθ=2log2∣θ∣0π/4=8πlog2.