Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { \pi / 4 } \log ( 1 + \tan \theta ) d \theta =\)...

0π/4log(1+tanθ)dθ=\int _ { 0 } ^ { \pi / 4 } \log ( 1 + \tan \theta ) d \theta =

A

π4log2\frac { \pi } { 4 } \log 2

B

π4log12\frac { \pi } { 4 } \log \frac { 1 } { 2 }

C

π8log2\frac { \pi } { 8 } \log 2

D

π8log12\frac { \pi } { 8 } \log \frac { 1 } { 2 }

Answer

π8log2\frac { \pi } { 8 } \log 2

Explanation

Solution

I=0π/4log(1+tanθ)dθI = \int _ { 0 } ^ { \pi / 4 } \log ( 1 + \tan \theta ) d \thetaI=0π/4log{1+tan(π4θ)}dθI = \int _ { 0 } ^ { \pi / 4 } \log \left\{ 1 + \tan \left( \frac { \pi } { 4 } - \theta \right) \right\} d \theta

⇒ I = 0π/4log(1+1tanθ1+tanθ)dθ\int _ { 0 } ^ { \pi / 4 } \log \left( 1 + \frac { 1 - \tan \theta } { 1 + \tan \theta } \right) d \theta

⇒ I = 0π/4log2dθ0π/4log(1+tanθ)dθ\int _ { 0 } ^ { \pi / 4 } \log 2 d \theta - \int _ { 0 } ^ { \pi / 4 } \log ( 1 + \tan \theta ) d \theta

I=120π/4log2dθ=log22θ0π/4=π8log2\Rightarrow I = \frac { 1 } { 2 } \int _ { 0 } ^ { \pi / 4 } \log 2 d \theta = \frac { \log 2 } { 2 } | \theta | _ { 0 } ^ { \pi / 4 } = \frac { \pi } { 8 } \log 2.