Solveeit Logo

Question

Question: \(\int _ { - \pi / 2 } ^ { \pi / 2 } \sqrt { \frac { 1 } { 2 } ( 1 - \cos 2 x ) } d x =\)...

π/2π/212(1cos2x)dx=\int _ { - \pi / 2 } ^ { \pi / 2 } \sqrt { \frac { 1 } { 2 } ( 1 - \cos 2 x ) } d x =

A

0

B

2

C

12\frac { 1 } { 2 }

D

None of these

Answer

2

Explanation

Solution

π/2π/212(1cos2x)dx=20π/2sinxdx\int _ { - \pi / 2 } ^ { \pi / 2 } \sqrt { \frac { 1 } { 2 } ( 1 - \cos 2 x ) } d x = 2 \int _ { 0 } ^ { \pi / 2 } | \sin x | d x

= 2[cosx]0π/2=2[cos(π2)+cos0]=22 [ - \cos x ] _ { 0 } ^ { \pi / 2 } = 2 \left[ - \cos \left( \frac { \pi } { 2 } \right) + \cos 0 \right] = 2.