Question
Question: \(\int _ { 0 } ^ { \pi / 2 } \log \sin x d x =\)...
∫0π/2logsinxdx=
A
−(2π)log2
B
πlog21
C
−πlog21
D
2πlog2
Answer
−(2π)log2
Explanation
Solution
∫0π/2logsinxdx=∫0π/2logcosxdx
⇒ 2I=∫0π/2logsinxcosxdx=∫0π/2logsin2xdx−∫0π/2log2dx
=21∫0πlogsintdt−2πlog2 , (Putting 2x=t )
=21⋅2∫0π/2logsintdt−2πlog2
⇒2I=I−2πlog2⇒I=2−πlog2 ,{∵∫abf(x)dx=∫abf(t)dt}.