Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { \pi / 2 } \log \sin x d x =\)...

0π/2logsinxdx=\int _ { 0 } ^ { \pi / 2 } \log \sin x d x =

A

(π2)log2- \left( \frac { \pi } { 2 } \right) \log 2

B

πlog12\pi \log \frac { 1 } { 2 }

C

πlog12- \pi \log \frac { 1 } { 2 }

D

π2log2\frac { \pi } { 2 } \log 2

Answer

(π2)log2- \left( \frac { \pi } { 2 } \right) \log 2

Explanation

Solution

0π/2logsinxdx=0π/2logcosxdx\int _ { 0 } ^ { \pi / 2 } \log \sin x d x = \int _ { 0 } ^ { \pi / 2 } \log \cos x d x

2I=0π/2logsinxcosxdx=0π/2logsin2xdx0π/2log2dx2 I = \int _ { 0 } ^ { \pi / 2 } \log \sin x \cos x d x = \int _ { 0 } ^ { \pi / 2 } \log \sin 2 x d x - \int _ { 0 } ^ { \pi / 2 } \log 2 d x

=120πlogsintdtπ2log2= \frac { 1 } { 2 } \int _ { 0 } ^ { \pi } \log \sin t d t - \frac { \pi } { 2 } \log 2 , (Putting 2x=t2 x = t )

=1220π/2logsintdtπ2log2= \frac { 1 } { 2 } \cdot 2 \int _ { 0 } ^ { \pi / 2 } \log \sin t d t - \frac { \pi } { 2 } \log 2

2I=Iπ2log2I=π2log2\Rightarrow 2 I = I - \frac { \pi } { 2 } \log 2 \Rightarrow I = \frac { - \pi } { 2 } \log 2 ,{abf(x)dx=abf(t)dt}\left\{ \because \int _ { a } ^ { b } f ( x ) d x = \int _ { a } ^ { b } f ( t ) d t \right\}.