Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { \pi / 2 } \log \tan x d x =\)...

0π/2logtanxdx=\int _ { 0 } ^ { \pi / 2 } \log \tan x d x =

A

π2loge2\frac { \pi } { 2 } \log _ { e } 2

B

π2loge2- \frac { \pi } { 2 } \log _ { e } 2

C

πloge2\pi \log _ { e } 2

D

0

Answer

0

Explanation

Solution

0π/2logtanxdx=0π/2log(sinxcosx)dx\int _ { 0 } ^ { \pi / 2 } \log \tan x d x = \int _ { 0 } ^ { \pi / 2 } \log \left( \frac { \sin x } { \cos x } \right) d x

=0π/2logsinxdx0π/2logcosxdx=0= \int _ { 0 } ^ { \pi / 2 } \log \sin x d x - \int _ { 0 } ^ { \pi / 2 } \log \cos x d x = 0,

{0af(x)dx=0af(ax)dx}\left\{ \because \int _ { 0 } ^ { a } f ( x ) d x = \int _ { 0 } ^ { a } f ( a - x ) d x \right\} .