Solveeit Logo

Question

Question: ![](https://cdn.pureessence.tech/canvas_421.png?top_left_x=0&top_left_y=600&width=300&height=116)...

A

π2log12\frac { \pi } { 2 } \log \frac { 1 } { 2 }

B

π22log12\frac { \pi ^ { 2 } } { 2 } \log \frac { 1 } { 2 }

C

πlog12\pi \log \frac { 1 } { 2 }

D

π2log12\pi ^ { 2 } \log \frac { 1 } { 2 }

Answer

π22log12\frac { \pi ^ { 2 } } { 2 } \log \frac { 1 } { 2 }

Explanation

Solution

I=0πxlogsinxdxI = \int _ { 0 } ^ { \pi } x \log \sin x d x …..(i)

= 0π(πx)logsin(πx)dx\int _ { 0 } ^ { \pi } ( \pi - x ) \log \sin ( \pi - x ) d x …..(ii)

By adding (i) and (ii), we get

2I=0ππlogsinxdxI=2π20π/2logsinxdx2 I = \int _ { 0 } ^ { \pi } \pi \log \sin x d x \Rightarrow I = \frac { 2 \pi } { 2 } \int _ { 0 } ^ { \pi / 2 } \log \sin x d x

=π(π2log12)=π22log12= \pi \left( \frac { \pi } { 2 } \log \frac { 1 } { 2 } \right) = \frac { \pi ^ { 2 } } { 2 } \log \frac { 1 } { 2 } .