Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { 2 \pi } | \sin x | d x =\)...

02πsinxdx=\int _ { 0 } ^ { 2 \pi } | \sin x | d x =

A

0

B

1

C

2

D

4

Answer

4

Explanation

Solution

02πsinxdx=0πsinxdx+π2πsinxdx\int _ { 0 } ^ { 2 \pi } | \sin x | d x = \int _ { 0 } ^ { \pi } \sin x d x + \int _ { \pi } ^ { 2 \pi } - \sin x d x

=[cosx]0π+[cosx]π2π=1+1+1+1=4= [ - \cos x ] _ { 0 } ^ { \pi } + [ \cos x ] _ { \pi } ^ { 2 \pi } = 1 + 1 + 1 + 1 = 4.