Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { \pi } x \sin x d x =\)...

0πxsinxdx=\int _ { 0 } ^ { \pi } x \sin x d x =

A

π\pi

B

0

C

1

D

π2\pi ^ { 2 }

Answer

π\pi

Explanation

Solution

I=0πxsinxdx=0π(πx)sinxdxI = \int _ { 0 } ^ { \pi } x \sin x d x = \int _ { 0 } ^ { \pi } ( \pi - x ) \sin x d x

2I=π0πsinxdx=π[cosx]0πI=π2 I = \pi \int _ { 0 } ^ { \pi } \sin x d x = \pi [ - \cos x ] _ { 0 } ^ { \pi } \Rightarrow I = \pi.