Question
Question: \(\int _ { 0 } ^ { \pi / 4 } \frac { \sec x } { 1 + 2 \sin ^ { 2 } x }\) is equal to...
∫0π/41+2sin2xsecx is equal to
A
31[log(2+1)+22π]
B
31[log(2+1)−22π]
C
3[log(2+1)−22π]
D
3[log(2+1)+22π]
Answer
31[log(2+1)+22π]
Explanation
Solution
Let I=∫0π/4cos2x(1+2sin2x)cosxdx
=∫0π/4(1−sin2x)(1+2sin2x)cosxdx
=31∫01/2(1−t21+1+2t22)dt
By partial fractions, where t=sinx
=31[21log(2−1)(2+1)+2tan−11]
=31[log(2+1)+22π].