Question
Question: \(\int\) [1 + tan x . tan (x + a)] dx is equal to –...
∫ [1 + tan x . tan (x + a)] dx is equal to –
A
cot a . logsin(x+α)sinx+C
B
tan a . logsin(x+α)sinx+C
C
cota . logcos(x+α)cosx+C
D
none of these
Answer
cota . logcos(x+α)cosx+C
Explanation
Solution
∫{1+cosx⋅cos(x+α)sinxsin(x+α)} dx
=
= = cosα∫cosx⋅cos(x+α)dx
Multiply denominator and numerator by
sin a= sinαcosα∫cosx⋅cos(x+α)sinαdx
= cotα∫cosx⋅cos(x+α)sin(x+α−x)dx
= cotα∫cosx⋅cos(x+α)sin(x+α)cosx−cos(x+α)sinxdx
=
=
= =