Solveeit Logo

Question

Question: ![](https://cdn.pureessence.tech/canvas_252.png?top_left_x=762&top_left_y=0&width=200&height=300)\|x...

|x| ln |x| dx equals (x ¹ 0)

A

12\frac{1}{2}x |x| ln |x| –14\frac{1}{4}x |x| + c

B

12\frac{1}{2}x |x| ln |x| +14\frac{1}{4}x |x| + c

C

12\frac{1}{2}x2ln |x| –14\frac{1}{4}x |x| + c

D

None of these

Answer

12\frac{1}{2}x |x| ln |x| –14\frac{1}{4}x |x| + c

Explanation

Solution

If x < 0, I = –xln(x)dx\int_{}^{}{x\mathcal{l}n( - x)dx}

= – [ln(x)xdx(dln(x)dxxdx)dx]\left\lbrack \mathcal{l}n( - x)\int_{}^{}{xdx - \int_{}^{}{\left( \frac{d\mathcal{l}n( - x)}{dx}\int_{}^{}{xdx} \right)dx}} \right\rbrack

= – [x22ln(x)1x.x22dx]\left\lbrack \frac{x^{2}}{2}\mathcal{l}n( - x) - \int_{}^{}{\frac{1}{x}.\frac{x^{2}}{2}}dx \right\rbrack

= – [x22ln(x)x24]\left\lbrack \frac{x^{2}}{2}\mathcal{l}n( - x) - \frac{x^{2}}{4} \right\rbrack+ c

= 12\frac{1}{2}x |x| ln |x| –14\frac{1}{4}x |x| + c (Q x < 0)

when, x > 0; I = xlnxdx\int_{}^{}{x\mathcal{l}nxdx}

= lnx xdx\int_{}^{}{xdx}(dlnxdxxdx)dx\int_{}^{}{\left( \frac{d\mathcal{l}nx}{dx}\int_{}^{}{xdx} \right)dx}

= x22\frac { x ^ { 2 } } { 2 } lnx – x24\frac{x^{2}}{4}+ c

= 12\frac{1}{2}x |x| ln |x| – 14\frac{1}{4}x |x| + c (x > 0)