Question
Question: \(f ( x ) = \sin ^ { p } x \cdot \cos ^ { q } x\) \(\left( p,q > 0,0 < x < \frac{\pi}{2} \right)\) h...
f(x)=sinpx⋅cosqx (p,q>0,0<x<2π) has point
of maximum at
A
x=tan−1(qp)
B
x=tan−1(pq)
C
No such point exist
D
) None of these
Answer
x=tan−1(pq)
Explanation
Solution
f(x)=sinpx.cosqx
f′(x)=sinpx.q.cosq−1x.(−sinx)+cosqx.psinp−1x.cosx= sinp−1x.cosq−1x(pcos2x−qsin2x).
For maxima & minima f′(x)=0
⇒ sinp−1x.cosq−1x(pcos2x−qsin2x)=0
⇒ pcos2x−qsin2x=0
tanx = qp
f′(x)=q⋅sinp−1x⋅cosq+1x⋅(qp−tan2x)
f′(x−h)=q+ve[qp−(tan(x−h)2)]=+ve f′(x+h)=+ve[qp−(tan(x+h))2]=−ve
sign changes from +ve to -ve;
so x = tan-1 (qp) is point of local maxima.
So, 'a' is correct.