Solveeit Logo

Question

Question: \(\lim _ { x \rightarrow 1 }\) \(\frac{\sqrt{1 - \cos 2(x - 1)}}{x - 1}\)...

limx1\lim _ { x \rightarrow 1 } 1cos2(x1)x1\frac{\sqrt{1 - \cos 2(x - 1)}}{x - 1}

A

Exists and it equal to2\sqrt{2}

B

Exists and it equals –2\sqrt{2}

C

Does not exist because x – 1 → 0

D

Does not exist because the left hand limit is not equal to the right hand limit

Answer

Does not exist because the left hand limit is not equal to the right hand limit

Explanation

Solution

limx1\lim _ { x \rightarrow 1 } 1cos2(x1)x1\frac { \sqrt { 1 - \cos 2 ( x - 1 ) } } { x - 1 } = limx1\lim _ { x \rightarrow 1 } 2sin(x1)x1\frac { \sqrt { 2 } | \sin ( x - 1 ) | } { x - 1 }

But 2sin(x1)x1\frac { \sqrt { 2 } | \sin ( x - 1 ) | } { x - 1 }

= 2\sqrt { 2 } = 2\sqrt { 2 } and

2sin(x1)x1\frac { \sqrt { 2 } | \sin ( x - 1 ) | } { x - 1 }

= – 2\sqrt { 2 } limx1\lim _ { x \rightarrow 1 - } = – 2\sqrt { 2 } .