Solveeit Logo

Question

Question: ![](https://cdn.pureessence.tech/canvas_667.png?top_left_x=1380&top_left_y=1142&width=300&height=286...

x(logx)31+x+x2\frac{x(\log x)^{3}}{1 + x + x^{2}}equals

A

0

B

– 1

C

1

D

Does not exist

Answer

0

Explanation

Solution

(logx)3+x3(logx)2×1x1+2x\frac { ( \log x ) ^ { 3 } + x \cdot 3 ( \log x ) ^ { 2 } \times \frac { 1 } { x } } { 1 + 2 x } (By D.L. Hospital rule)

3(logx)2×1x+6(logx)×1x2\frac { 3 ( \log x ) ^ { 2 } \times \frac { 1 } { x } + 6 ( \log x ) \times \frac { 1 } { x } } { 2 } (By D.L. Hospital rule)

3(logx)2+6logx2x\frac { 3 ( \log x ) ^ { 2 } + 6 \log x } { 2 x } (By D.L. Hospital rule)

(By D.L. Hospital rule)

Limx6logx+62x\operatorname { Lim } _ { x \rightarrow \infty } \frac { 6 \log x + 6 } { 2 x } (By D.L. Hospital rule)

6(1x)+02\frac { 6 \left( \frac { 1 } { x } \right) + 0 } { 2 } (By D.L. Hospital rule)

=62= \frac { \frac { 6 } { \infty } } { 2 }= 0