Solveeit Logo

Question

Question: \(\lim _ { x \rightarrow 0 }\) \(\frac{1 - \cos^{3}x}{x\sin x\cos x}\)is equal to...

limx0\lim _ { x \rightarrow 0 } 1cos3xxsinxcosx\frac{1 - \cos^{3}x}{x\sin x\cos x}is equal to

A

2/5

B

3/5

C

3/2

D

¾

Answer

3/2

Explanation

Solution

limx0\lim _ { x \rightarrow 0 } 1cos3xxsinxcosx\frac{1 - \cos^{3}x}{x\sin x\cos x}= limx0\lim _ { x \rightarrow 0 }

(1cosx)(1+cos2x+cosx)xsinxcosx\frac{(1 - \cos x)(1 + \cos^{2}x + \cos x)}{x\sin x\cos x}

= limx0\lim _ { x \rightarrow 0 } 2sin2(x/2)(1+cos2x+cosx)2xsin(x/2)cos(x/2)cos(x/2)cosx\frac{2\sin^{2}(x/2)(1 + \cos^{2}x + \cos x)}{2x\sin(x/2)\cos(x/2)\cos(x/2)\cos x}

= limx0\lim_{x \rightarrow 0} 12\frac{1}{2}. sin(x/2)x/2\frac{\sin(x/2)}{x/2}. 1+cos2x+cosxcos(x/2)cosx\frac{1 + \cos^{2}x + \cos x}{\cos(x/2)\cos x}

= 12\frac{1}{2}. 1. 31\frac{3}{1}= 32\frac{3}{2}