Solveeit Logo

Question

Question: \(\lim _ { x \rightarrow 0 }\) \(\frac{\sin^{- 1}x - \tan^{- 1}x}{x^{3}}\)is equal to...

limx0\lim _ { x \rightarrow 0 } sin1xtan1xx3\frac{\sin^{- 1}x - \tan^{- 1}x}{x^{3}}is equal to

A

2

B

1

C

–1

D

½

Answer

½

Explanation

Solution

limx0\lim _ { x \rightarrow 0 } sin1xtan1xx3\frac{\sin^{- 1}x - \tan^{- 1}x}{x^{3}} (00form)\left( \frac{0}{0}form \right)

= limx0\lim _ { x \rightarrow 0 } 11x211+x23x2\frac{\frac{1}{\sqrt{1 - x^{2}}} - \frac{1}{1 + x^{2}}}{3x^{2}} (L′ Hospital rule)

= 13\frac { 1 } { 3 } limx0\lim_{x \rightarrow 0}[1+x21x2(1+x2)1x2]\left\lbrack \frac{1 + x^{2} - \sqrt{1 - x^{2}}}{(1 + x^{2})\sqrt{1 - x^{2}}} \right\rbrack

=13\frac { 1 } { 3 } limx0\lim _ { x \rightarrow 0 } 1x2\frac { 1 } { x ^ { 2 } } [(1+x2)2(1x2)(1+x2)1x21(1+x2)+1x2]\left[ \frac { \left( 1 + x ^ { 2 } \right) ^ { 2 } - \left( 1 - x ^ { 2 } \right) } { \left( 1 + x ^ { 2 } \right) \sqrt { 1 - x ^ { 2 } } } \cdot \frac { 1 } { \left( 1 + x ^ { 2 } \right) + \sqrt { 1 - x ^ { 2 } } } \right]

= 13\frac { 1 } { 3 } limx0\lim _ { x \rightarrow 0 } x2(3+x2)x2(1+x2)1x2\frac { x ^ { 2 } \left( 3 + x ^ { 2 } \right) } { x ^ { 2 } \left( 1 + x ^ { 2 } \right) \sqrt { 1 - x ^ { 2 } } } .

= 13\frac { 1 } { 3 } (32)\left( \frac { 3 } { 2 } \right)= 12\frac { 1 } { 2 }