Solveeit Logo

Question

Question: \(\lim _ { x \rightarrow \infty }\) \(\left( \frac{x + 6}{x + 1} \right)^{x + 4}\) =...

limx\lim _ { x \rightarrow \infty } (x+6x+1)x+4\left( \frac{x + 6}{x + 1} \right)^{x + 4} =

A

e

B

e4

C

e5

D

e6

Answer

e5

Explanation

Solution

limx\lim_{x \rightarrow \infty} (x+6x+1)x+4\left( \frac{x + 6}{x + 1} \right)^{x + 4} = 1 form

Ž elimx(x+4)[x+6x+11]\mathrm { e } ^ { \lim _ { \mathrm { x } \rightarrow \infty } ( \mathrm { x } + 4 ) \left[ \frac { \mathrm { x } + 6 } { \mathrm { x } + 1 } - 1 \right] } =

= elimx5x+20x+1e^{\lim_{x \rightarrow \infty}\frac{5x + 20}{x + 1}} = e5