Solveeit Logo

Question

Question: Measure of two quantities along with the precision of respective measuring instrument is \(\mathrm...

Measure of two quantities along with the precision of respective measuring instrument is

A=2.5 ms1±0.5 ms1, B=0.10 s±0.01 s\mathrm { A } = 2.5 \mathrm {~ms} ^ { - 1 } \pm 0.5 \mathrm {~ms} ^ { - 1 } , \mathrm {~B} = 0.10 \mathrm {~s} \pm 0.01 \mathrm {~s}

The value of AB will be

A

(a) (0.25±0.08)m( 0.25 \pm 0.08 ) \mathrm { m }

A

(b) (0.25±0.5)m( 0.25 \pm 0.5 ) \mathrm { m }

A

(c) (0.25±0.05)m( 0.25 \pm 0.05 ) \mathrm { m }

A

(d) (0.25±0.135)m( 0.25 \pm 0.135 ) \mathrm { m }

Explanation

Solution

(a)

Sol. Here , A=2.5 ms1±0.5 ms1\mathrm { A } = 2.5 \mathrm {~ms} ^ { - 1 } \pm 0.5 \mathrm {~ms} ^ { - 1 }

B=0.10s±0.01sB = 0.10 s \pm 0.01 s

AB=(2.5 ms1)(0.10 s)=0.25 cm\mathrm { AB } = \left( 2.5 \mathrm {~ms} ^ { - 1 } \right) ( 0.10 \mathrm {~s} ) = 0.25 \mathrm {~cm} ΔABAB=(ΔAA+ΔBB)=(0.52.5+0.010.10)=0.3\frac { \Delta \mathrm { AB } } { \mathrm { AB } } = \left( \frac { \Delta \mathrm { A } } { \mathrm { A } } + \frac { \Delta \mathrm { B } } { \mathrm { B } } \right) = \left( \frac { 0.5 } { 2.5 } + \frac { 0.01 } { 0.10 } \right) = 0.3 ΔAB=0.3×0.25 m=0.075n\Delta \mathrm { AB } = 0.3 \times 0.25 \mathrm {~m} = 0.075 \mathrm { n }

=0.08 m= 0.08 \mathrm {~m} (Rounded off to two significant figures)

The value of AB is (0.25±0.08)m( 0.25 \pm 0.08 ) \mathrm { m }