Solveeit Logo

Question

Mathematics Question on Statistics

Mean of nn observations x1,x2,........,xnx_{1}, x_{2}, ........ , x_{n} is xˉ.\bar{x}. If an observation xqx_q is replaced by xqx'_q then the new mean is

A

xˉxq+xq\bar {x}-x_{q}+x'_{q}

B

(n1)x~+xqn\frac{_{\left(n-1\right)\tilde{x}+x'_{q}}}{n}

C

(n1)x~xqn\frac{_{\left(n-1\right)\tilde{x}-x'_{q}}}{n}

D

nx~xqxqn\frac{_{n\tilde{x}-x_{q}-x'_{q}}}{n}

Answer

nx~xqxqn\frac{_{n\tilde{x}-x_{q}-x'_{q}}}{n}

Explanation

Solution

We have,
xˉ=x1+x2++xq++xnn\bar{x}=\frac{x_{1}+x_{2}+\ldots+x_{q}+\ldots+x_{n}}{n}
Σx=nxˉ\Rightarrow \Sigma x=n \bar{x} \ldots (i)
If xqx_{q} is replaced by xqx_{q}^{\prime}, then new total will be
Σx=Σxxqxq\Sigma x^{\prime}=\Sigma x-x_{q}-x_{q}^{\prime}
\therefore New mean will be
xˉ=Σxn\bar{x}^{\prime} =\frac{\Sigma x^{\prime}}{n}
xˉ=Σxxq+xqn\bar{x}^{\prime} =\frac{\Sigma x-x_{q}+x_{q}^{\prime}}{n}
xˉ=nxˉxq+xqn[\bar{x}^{\prime}=\frac{n \bar{x}-x_{q}+x_{q}^{\prime}}{n}[ from E (i)]