Solveeit Logo

Question

Question: Mean deviation from the median of the data \[90,100,125,115,110\] is? \({\text{(A) 10}}\) \({\te...

Mean deviation from the median of the data 90,100,125,115,11090,100,125,115,110 is?
(A) 10{\text{(A) 10}}
(B) 20{\text{(B) 20}}
(C) 30{\text{(C) 30}}
(D) None of these{\text{(D) None of these}}

Explanation

Solution

Here we have to calculate the deviation from the medium; we will first calculate the median and find the deviation from it. We will make use of the below mentioned formulas to solve. Finally we get the required answer.

Formula used: Mean = sum of termsnumber of terms{\text{Mean = }}\dfrac{{{\text{sum of terms}}}}{{{\text{number of terms}}}}
Median = [n + 12]th term if n is odd,{\text{Median = }}{\left[ {\dfrac{{{\text{n + 1}}}}{{\text{2}}}} \right]^{th}}{\text{ term if n is odd,}}
Median = [[n2]th term + [n2+1]th term2] if n is even.{\text{Median = }}\left[ {\dfrac{{{{\left[ {\dfrac{{\text{n}}}{{\text{2}}}} \right]}^{th}}{\text{ term + }}{{\left[ {\dfrac{{\text{n}}}{{\text{2}}} + 1} \right]}^{th}}{\text{ term}}}}{{\text{2}}}} \right]{\text{ if n is even}}{\text{.}}

Complete step-by-step solution:
To calculate the deviation, we first find the median of the given data
90,100,125,115,11090,100,125,115,110
To calculate the median, we have to first arrange the given data into ascending order, the data after being sorted in ascending order is:
90,100,110,115,12590,100,110,115,125
Now the total number of terms in the given distribution is 55 which is an odd number therefore the formula to find the median is:
Median = [n + 12]th term{\text{Median = }}{\left[ {\dfrac{{{\text{n + 1}}}}{{\text{2}}}} \right]^{th}}{\text{ term}}
Now nnis the total number of terms in the distribution therefore we know n=5n = 5.
After substituting the values in the formula, we get:
Median = [5 + 12]th term{\text{Median = }}{\left[ {\dfrac{{{\text{5 + 1}}}}{{\text{2}}}} \right]^{th}}{\text{ term}}
On simplifying we get:
Median = [3]rd term{\text{Median = }}{\left[ 3 \right]^{rd}}{\text{ term}}
Now the 3rd{3^{rd}} term in the distribution is 110110 therefore the median of the distribution is 110110.
Now we will find the deviation from the median of all the values.
The deviation from median can be represented from the following table:
We know the deviation from median is xiMedian|{x_i} - Median| where xi{x_i} is the ith{i^{th}} term in the distribution

Value xi{x_i}| Deviation from median xiMedian|{x_i} - Median|
---|---
9090| 2020
100100| 1010
125125| 1515
115115| 55
110110| 00

Now the mean deviation from median will be the mean of all the deviation of means which could be done as:
xiMediann\sum {\dfrac{{|{x_i} - Median|}}{n}}
On substituting the values, we get:
Mean deviation from median=20+10+15+5+05{\text{Mean deviation from median}} = \dfrac{{20 + 10 + 15 + 5 + 0}}{5}
On simplifying we get:
Mean deviation from median=505{\text{Mean deviation from median}} = \dfrac{{50}}{5}
On further simplifying we get:
Mean deviation from median=10{\text{Mean deviation from median}} = 10,

Therefore, the correct option is (A){\text{(A)}} which is 1010.

Note: Apart from the mean deviation from median which was solved in this question, there also exists mean absolute deviation and mean deviation from mode.
The formula for mean deviation is:
Mean deviation = |xi - Mean|n{\text{Mean deviation = }}\dfrac{{\sum {{\text{|}}{{\text{x}}_{\text{i}}}{\text{ - Mean|}}} }}{{\text{n}}}
Also, the formula for mean deviation from mode is:
Mean deviation from mode = |xi - Mode|n{\text{Mean deviation from mode = }}\dfrac{{\sum {{\text{|}}{{\text{x}}_{\text{i}}}{\text{ - Mode|}}} }}{{\text{n}}}
Where xi{x_i} are the terms in the distribution and nn is the total number of terms in the distribution