Question
Question: Find following integrations. (Find them by 12 basic integrations and addition technique) 1. $\int ...
Find following integrations. (Find them by 12 basic integrations and addition technique)
- ∫12.23.....nxdx
- ∫3x+6x4x+8xdx
- ∫1−tan2x1+tan2xdx
- ∫tan2xdx
- ∫sin4xdx
- ∫1+x+x21+x2+x4dx
- ∫x2+x4dx
- ∫x+1+xdx
- ∫sec2x.cosec2xdx
- ∫1+cos2x1+cos2xdx
- ∫sinx.sin(π/3−x).sin(π/3+x).dx
- ∫sin2xdx
- ∫sin3xdx
- ∫(1+x+x2)(1−x+x2)−1x2023+x2025dx
- ∫1+x2024+x40481+x4048+x8096dx
- ∫1+2x+4x1+4x+16xdx
Section 2: Use any technique to ge-
- ∫tan3xdx
- ∫tan4xdx
- ∫1+exdx
- ∫sinx+sin

The problem asks to find several indefinite integrals, divided into two sections based on the allowed techniques.
Section 1: Find following integrations. (Find them by 12 basic integrations and addition technique)
-
∫12.23.....nxdx Assuming the question intended ∫1x⋅2x⋅⋯⋅nxdx (as seen in similar problems), this simplifies to ∫(1⋅2⋅⋯⋅n)xdx=∫(n!)xdx. This is a standard integral of the form ∫axdx=lnaax+C. ∫(n!)xdx=ln(n!)(n!)x+C
-
∫3x+6x4x+8xdx Factor the numerator and denominator: Numerator: 4x+8x=4x(1+2x) Denominator: 3x+6x=3x(1+2x) The integral becomes: ∫3x(1+2x)4x(1+2x)dx=∫3x4xdx=∫(34)xdx Using ∫axdx=lnaax+C: ∫(34)xdx=ln(4/3)(4/3)x+C
-
∫1−tan2x1+tan2xdx Use the identity 1+tan2x=sec2x. Rewrite the denominator: 1−tan2x=1−cos2xsin2x=cos2xcos2x−sin2x=cos2xcos2x. The integral becomes: ∫cos2xcos2xsec2xdx=∫cos2x/cos2x1/cos2xdx=∫cos2x1dx=∫sec2xdx Using the standard integral ∫secudu=ln∣secu+tanu∣+C: ∫sec2xdx=21ln∣sec2x+tan2x∣+C
-
∫tan2xdx Use the identity tan2x=sec2x−1. ∫(sec2x−1)dx=∫sec2xdx−∫1dx=tanx−x+C
-
∫sin4xdx Use the power reduction formula sin2x=21−cos2x: sin4x=(sin2x)2=(21−cos2x)2=41−2cos2x+cos22x Now use cos2θ=21+cos2θ for cos22x: cos22x=21+cos(2⋅2x)=21+cos4x Substitute back into the expression for sin4x: sin4x=41−2cos2x+21+cos4x=82−4cos2x+1+cos4x=83−4cos2x+cos4x Now integrate: ∫83−4cos2x+cos4xdx=81(3x−42sin2x+4sin4x)+C =83x−82sin2x+32sin4x+C=83x−4sin2x+32sin4x+C
-
∫1+x+x21+x2+x4dx Factor the numerator using the identity a4+a2b2+b4=(a2+ab+b2)(a2−ab+b2). Here, a=1,b=x: 1+x2+x4=(1+x+x2)(1−x+x2) The integral becomes: ∫1+x+x2(1+x+x2)(1−x+x2)dx=∫(1−x+x2)dx Integrate term by term: ∫(1−x+x2)dx=x−2x2+3x3+C
-
∫x2+x4dx Factor the denominator: x2+x4=x2(1+x2). Rewrite the integrand using a trick (or partial fractions): x2(1+x2)1=x2(1+x2)(1+x2)−x2=x2(1+x2)1+x2−x2(1+x2)x2=x21−1+x21 Now integrate: ∫(x21−1+x21)dx=∫x−2dx−∫1+x21dx=−x1−tan−1x+C
-
∫x+1+xdx Rationalize the denominator by multiplying by the conjugate x+1−x: ∫x+1+x1⋅x+1−xx+1−xdx=∫(x+1)−xx+1−xdx=∫(x+1−x)dx =∫(x+1)1/2dx−∫x1/2dx=3/2(x+1)3/2−3/2x3/2+C =32(x+1)3/2−32x3/2+C
-
∫sec2x.cosec2xdx Rewrite in terms of sinx and cosx: sec2xcsc2x=cos2xsin2x1 Use the identity sin2x+cos2x=1 in the numerator: =sin2xcos2xsin2x+cos2x=sin2xcos2xsin2x+sin2xcos2xcos2x=cos2x1+sin2x1=sec2x+csc2x Now integrate: ∫(sec2x+csc2x)dx=∫sec2xdx+∫csc2xdx=tanx−cotx+C
-
∫1+cos2x1+cos2xdx Use the identity 1+cos2x=2cos2x: ∫2cos2x1+cos2xdx=∫(2cos2x1+2cos2xcos2x)dx=∫(21sec2x+21)dx =21∫sec2xdx+21∫1dx=21tanx+21x+C
-
∫sinx.sin(π/3−x).sin(π/3+x).dx Use the trigonometric identity sinAsin(60∘−A)sin(60∘+A)=41sin3A. Here A=x and 60∘=π/3. So, sinxsin(π/3−x)sin(π/3+x)=41sin3x. The integral becomes: ∫41sin3xdx=41(−3cos3x)+C=−12cos3x+C
-
∫sin2xdx Use the power reduction formula sin2x=21−cos2x: ∫21−cos2xdx=21∫(1−cos2x)dx=21(x−2sin2x)+C =2x−4sin2x+C
-
∫sin3xdx Rewrite sin3x=sin2x⋅sinx=(1−cos2x)sinx. Let u=cosx, then du=−sinxdx, so sinxdx=−du. The integral becomes: ∫(1−u2)(−du)=∫(u2−1)du=3u3−u+C Substitute back u=cosx: =3cos3x−cosx+C
-
∫(1+x+x2)(1−x+x2)−1x2023+x2025dx Simplify the denominator: (1+x+x2)(1−x+x2)=(1+x2+x)(1+x2−x)=(1+x2)2−x2=1+2x2+x4−x2=1+x2+x4. So the denominator is (1+x2+x4)−1=x2+x4=x2(1+x2). Factor the numerator: x2023+x2025=x2023(1+x2). The integral becomes: ∫x2(1+x2)x2023(1+x2)dx=∫x2x2023dx=∫x2021dx Integrate using the power rule: ∫x2021dx=2022x2022+C
-
∫1+x2024+x40481+x4048+x8096dx Let y=x2024. Then y2=x4048 and y4=x8096. The integrand becomes 1+y+y21+y2+y4. As shown in problem 6, 1+y2+y4=(1+y+y2)(1−y+y2). So, 1+y+y21+y2+y4=1−y+y2. Substitute back y=x2024: The integrand is 1−x2024+(x2024)2=1−x2024+x4048. Now integrate: ∫(1−x2024+x4048)dx=x−2025x2025+4049x4049+C
-
∫1+2x+4x1+4x+16xdx Let y=2x. Then 4x=(2x)2=y2 and 16x=(2x)4=y4. The integrand becomes 1+y+y21+y2+y4. As shown in problem 6, this simplifies to 1−y+y2. Substitute back y=2x: The integrand is 1−2x+(2x)2=1−2x+4x. Now integrate: ∫(1−2x+4x)dx=∫1dx−∫2xdx+∫4xdx =x−ln22x+ln44x+C
Section 2: Use any technique to ge-
-
∫tan3xdx Rewrite tan3x=tan2x⋅tanx=(sec2x−1)tanx=sec2xtanx−tanx. Integrate term by term: ∫(sec2xtanx−tanx)dx=∫sec2xtanxdx−∫tanxdx For the first integral, let u=tanx, then du=sec2xdx. So, ∫udu=2u2=2tan2x. For the second integral, ∫tanxdx=ln∣secx∣. ∫tan3xdx=2tan2x−ln∣secx∣+C
-
∫tan4xdx Rewrite tan4x=tan2x⋅tan2x=(sec2x−1)tan2x=sec2xtan2x−tan2x. Further substitute tan2x=sec2x−1: =sec2xtan2x−(sec2x−1)=sec2xtan2x−sec2x+1 Integrate term by term: ∫(sec2xtan2x−sec2x+1)dx=∫sec2xtan2xdx−∫sec2xdx+∫1dx For the first integral, let u=tanx, then du=sec2xdx. So, ∫u2du=3u3=3tan3x. ∫tan4xdx=3tan3x−tanx+x+C
-
∫1+exdx Multiply the numerator and denominator by e−x: ∫e−x(1+ex)e−xdx=∫e−x+1e−xdx Let u=e−x+1. Then du=−e−xdx. The integral becomes: ∫u−du=−ln∣u∣+C Substitute back u=e−x+1: =−ln∣e−x+1∣+C (Alternatively, ln1+exex+C)
-
∫sinx+sin This integral is incomplete. Based on the similar question (Q16: ∫cosx+cos2xsinx+sin2xdx) and its given answer, it is likely that the intended problem was ∫cosx+cos2xsinx+2sin2xdx. Assuming the intended question is ∫cosx+cos2xsinx+2sin2xdx: Let u=cosx+cos2x. Then du=(−sinx−2sin2x)dx=−(sinx+2sin2x)dx. So, the integral becomes: ∫u−du=−ln∣u∣+C Substitute back u=cosx+cos2x: =−ln∣cosx+cos2x∣+C
Explanation of the solution:
The problems involve various integration techniques, primarily focusing on algebraic manipulation, trigonometric identities, and standard integral formulas.
- Problems 1, 2, 16 (Section 1): Involve simplifying exponential terms and using the formula ∫axdx=lnaax+C.
- Problems 3, 4, 5, 9, 10, 11, 12, 13 (Section 1) and 1, 2 (Section 2): Utilize trigonometric identities (e.g., 1+tan2x=sec2x, sin2x=21−cos2x, sinAsinB product-to-sum, sin3x=sinx(1−cos2x)) to transform the integrand into simpler forms that can be integrated using basic formulas like ∫sec2xdx=tanx, ∫cosaxdx=asinax, ∫sinaxdx=−acosax, or substitution.
- Problems 6, 14, 15 (Section 1): Involve algebraic factorization using the identity 1+x2+x4=(1+x+x2)(1−x+x2) to simplify rational functions before integrating polynomials.
- Problem 7 (Section 1): Uses a partial fraction decomposition trick by adding and subtracting terms in the numerator to split the fraction into simpler integrable forms.
- Problem 8 (Section 1): Involves rationalizing the denominator for expressions with square roots.
- Problem 3 (Section 2): Uses substitution (u=ex) or multiplying by e−x to convert the integrand into a form suitable for logarithmic integration.
- Problem 4 (Section 2): (Assuming the completed form) is a direct application of ∫f(x)f′(x)dx=ln∣f(x)∣+C by recognizing the numerator as the negative derivative of the denominator.
Answer:
The solutions for the integrals are as follows:
Section 1:
- ln(n!)(n!)x+C
- ln(4/3)(4/3)x+C
- 21ln∣sec2x+tan2x∣+C
- tanx−x+C
- 83x−4sin2x+32sin4x+C
- x−2x2+3x3+C
- −x1−tan−1x+C
- 32(x+1)3/2−32x3/2+C
- tanx−cotx+C
- 21tanx+21x+C
- −12cos3x+C
- 2x−4sin2x+C
- 3cos3x−cosx+C
- 2022x2022+C
- x−2025x2025+4049x4049+C
- x−ln22x+ln44x+C
Section 2:
- 2tan2x−ln∣secx∣+C
- 3tan3x−tanx+x+C
- −ln∣e−x+1∣+C (or ln1+exex+C)
- Assuming the question was ∫cosx+cos2xsinx+2sin2xdx: −ln∣cosx+cos2x∣+C
Solution
The problems involve various integration techniques, primarily focusing on algebraic manipulation, trigonometric identities, and standard integral formulas.
- Problems 1, 2, 16 (Section 1): Involve simplifying exponential terms and using the formula ∫axdx=lnaax+C.
- Problems 3, 4, 5, 9, 10, 11, 12, 13 (Section 1) and 1, 2 (Section 2): Utilize trigonometric identities (e.g., 1+tan2x=sec2x, sin2x=21−cos2x, sinAsinB product-to-sum, sin3x=sinx(1−cos2x)) to transform the integrand into simpler forms that can be integrated using basic formulas like ∫sec2xdx=tanx, ∫cosaxdx=asinax, ∫sinaxdx=−acosax, or substitution.
- Problems 6, 14, 15 (Section 1): Involve algebraic factorization using the identity 1+x2+x4=(1+x+x2)(1−x+x2) to simplify rational functions before integrating polynomials.
- Problem 7 (Section 1): Uses a partial fraction decomposition trick by adding and subtracting terms in the numerator to split the fraction into simpler integrable forms.
- Problem 8 (Section 1): Involves rationalizing the denominator for expressions with square roots.
- Problem 3 (Section 2): Uses substitution (u=ex) or multiplying by e−x to convert the integrand into a form suitable for logarithmic integration.
- Problem 4 (Section 2): (Assuming the completed form) is a direct application of ∫f(x)f′(x)dx=ln∣f(x)∣+C by recognizing the numerator as the negative derivative of the denominator.