Solveeit Logo

Question

Question: Find following integrations. (Find them by 12 basic integrations and addition technique) 1. $\int ...

Find following integrations. (Find them by 12 basic integrations and addition technique)

  1. 12.23.....nxdx\int 1^2.2^3.....n^xdx
  2. 4x+8x3x+6xdx\int \frac{4^x+8^x}{3^x+6^x}dx
  3. 1+tan2x1tan2xdx\int \frac{1+tan^2x}{1-tan^2x}dx
  4. tan2xdx\int tan^2xdx
  5. sin4xdx\int sin^4xdx
  6. 1+x2+x41+x+x2dx\int \frac{1+x^2+x^4}{1+x+x^2}dx
  7. dxx2+x4\int \frac{dx}{x^2+x^4}
  8. dxx+1+x\int \frac{dx}{\sqrt{x + 1} + \sqrt{x}}
  9. sec2x.cosec2xdx\int sec^2x.cosec^2xdx
  10. 1+cos2x1+cos2xdx\int \frac{1+cos^2x}{1+cos2x}dx
  11. sinx.sin(π/3x).sin(π/3+x).dx\int sinx.sin(\pi/3 - x).sin(\pi/3 + x).dx
  12. sin2xdx\int sin^2xdx
  13. sin3xdx\int sin^3xdx
  14. x2023+x2025(1+x+x2)(1x+x2)1dx\int \frac{x^{2023} + x^{2025}}{(1+x+x^2)(1-x+x^2)-1}dx
  15. 1+x4048+x80961+x2024+x4048dx\int \frac{1+x^{4048} + x^{8096}}{1+x^{2024} + x^{4048}}dx
  16. 1+4x+16x1+2x+4xdx\int \frac{1+4^x+16^x}{1+2^x+4^x}dx

Section 2: Use any technique to ge-

  1. tan3xdx\int tan^3xdx
  2. tan4xdx\int tan^4x dx
  3. dx1+ex\int \frac{dx}{1+e^x}
  4. sinsinx+\int \frac{sin}{sinx +}
Answer

The problem asks to find several indefinite integrals, divided into two sections based on the allowed techniques.

Section 1: Find following integrations. (Find them by 12 basic integrations and addition technique)

  1. 12.23.....nxdx\int 1^2.2^3.....n^xdx Assuming the question intended 1x2xnxdx\int 1^x \cdot 2^x \cdot \dots \cdot n^x dx (as seen in similar problems), this simplifies to (12n)xdx=(n!)xdx\int (1 \cdot 2 \cdot \dots \cdot n)^x dx = \int (n!)^x dx. This is a standard integral of the form axdx=axlna+C\int a^x dx = \frac{a^x}{\ln a} + C. (n!)xdx=(n!)xln(n!)+C\int (n!)^x dx = \frac{(n!)^x}{\ln(n!)} + C

  2. 4x+8x3x+6xdx\int \frac{4^x+8^x}{3^x+6^x}dx Factor the numerator and denominator: Numerator: 4x+8x=4x(1+2x)4^x+8^x = 4^x(1+2^x) Denominator: 3x+6x=3x(1+2x)3^x+6^x = 3^x(1+2^x) The integral becomes: 4x(1+2x)3x(1+2x)dx=4x3xdx=(43)xdx\int \frac{4^x(1+2^x)}{3^x(1+2^x)}dx = \int \frac{4^x}{3^x}dx = \int \left(\frac{4}{3}\right)^x dx Using axdx=axlna+C\int a^x dx = \frac{a^x}{\ln a} + C: (43)xdx=(4/3)xln(4/3)+C\int \left(\frac{4}{3}\right)^x dx = \frac{(4/3)^x}{\ln(4/3)} + C

  3. 1+tan2x1tan2xdx\int \frac{1+tan^2x}{1-tan^2x}dx Use the identity 1+tan2x=sec2x1+\tan^2x = \sec^2x. Rewrite the denominator: 1tan2x=1sin2xcos2x=cos2xsin2xcos2x=cos2xcos2x1-\tan^2x = 1 - \frac{\sin^2x}{\cos^2x} = \frac{\cos^2x - \sin^2x}{\cos^2x} = \frac{\cos2x}{\cos^2x}. The integral becomes: sec2xcos2xcos2xdx=1/cos2xcos2x/cos2xdx=1cos2xdx=sec2xdx\int \frac{\sec^2x}{\frac{\cos2x}{\cos^2x}}dx = \int \frac{1/\cos^2x}{\cos2x/\cos^2x}dx = \int \frac{1}{\cos2x}dx = \int \sec2x dx Using the standard integral secudu=lnsecu+tanu+C\int \sec u du = \ln|\sec u + \tan u| + C: sec2xdx=12lnsec2x+tan2x+C\int \sec2x dx = \frac{1}{2}\ln|\sec2x + \tan2x| + C

  4. tan2xdx\int tan^2xdx Use the identity tan2x=sec2x1\tan^2x = \sec^2x - 1. (sec2x1)dx=sec2xdx1dx=tanxx+C\int (\sec^2x - 1)dx = \int \sec^2x dx - \int 1 dx = \tan x - x + C

  5. sin4xdx\int sin^4xdx Use the power reduction formula sin2x=1cos2x2\sin^2x = \frac{1-\cos2x}{2}: sin4x=(sin2x)2=(1cos2x2)2=12cos2x+cos22x4\sin^4x = (\sin^2x)^2 = \left(\frac{1-\cos2x}{2}\right)^2 = \frac{1-2\cos2x+\cos^22x}{4} Now use cos2θ=1+cos2θ2\cos^2\theta = \frac{1+\cos2\theta}{2} for cos22x\cos^22x: cos22x=1+cos(22x)2=1+cos4x2\cos^22x = \frac{1+\cos(2 \cdot 2x)}{2} = \frac{1+\cos4x}{2} Substitute back into the expression for sin4x\sin^4x: sin4x=12cos2x+1+cos4x24=24cos2x+1+cos4x8=34cos2x+cos4x8\sin^4x = \frac{1-2\cos2x+\frac{1+\cos4x}{2}}{4} = \frac{2-4\cos2x+1+\cos4x}{8} = \frac{3-4\cos2x+\cos4x}{8} Now integrate: 34cos2x+cos4x8dx=18(3x4sin2x2+sin4x4)+C\int \frac{3-4\cos2x+\cos4x}{8}dx = \frac{1}{8} \left( 3x - 4\frac{\sin2x}{2} + \frac{\sin4x}{4} \right) + C =3x82sin2x8+sin4x32+C=3x8sin2x4+sin4x32+C= \frac{3x}{8} - \frac{2\sin2x}{8} + \frac{\sin4x}{32} + C = \frac{3x}{8} - \frac{\sin2x}{4} + \frac{\sin4x}{32} + C

  6. 1+x2+x41+x+x2dx\int \frac{1+x^2+x^4}{1+x+x^2}dx Factor the numerator using the identity a4+a2b2+b4=(a2+ab+b2)(a2ab+b2)a^4+a^2b^2+b^4 = (a^2+ab+b^2)(a^2-ab+b^2). Here, a=1,b=xa=1, b=x: 1+x2+x4=(1+x+x2)(1x+x2)1+x^2+x^4 = (1+x+x^2)(1-x+x^2) The integral becomes: (1+x+x2)(1x+x2)1+x+x2dx=(1x+x2)dx\int \frac{(1+x+x^2)(1-x+x^2)}{1+x+x^2}dx = \int (1-x+x^2)dx Integrate term by term: (1x+x2)dx=xx22+x33+C\int (1-x+x^2)dx = x - \frac{x^2}{2} + \frac{x^3}{3} + C

  7. dxx2+x4\int \frac{dx}{x^2+x^4} Factor the denominator: x2+x4=x2(1+x2)x^2+x^4 = x^2(1+x^2). Rewrite the integrand using a trick (or partial fractions): 1x2(1+x2)=(1+x2)x2x2(1+x2)=1+x2x2(1+x2)x2x2(1+x2)=1x211+x2\frac{1}{x^2(1+x^2)} = \frac{(1+x^2) - x^2}{x^2(1+x^2)} = \frac{1+x^2}{x^2(1+x^2)} - \frac{x^2}{x^2(1+x^2)} = \frac{1}{x^2} - \frac{1}{1+x^2} Now integrate: (1x211+x2)dx=x2dx11+x2dx=1xtan1x+C\int \left(\frac{1}{x^2} - \frac{1}{1+x^2}\right)dx = \int x^{-2}dx - \int \frac{1}{1+x^2}dx = -\frac{1}{x} - \tan^{-1}x + C

  8. dxx+1+x\int \frac{dx}{\sqrt{x + 1} + \sqrt{x}} Rationalize the denominator by multiplying by the conjugate x+1x\sqrt{x+1} - \sqrt{x}: 1x+1+xx+1xx+1xdx=x+1x(x+1)xdx=(x+1x)dx\int \frac{1}{\sqrt{x+1}+\sqrt{x}} \cdot \frac{\sqrt{x+1}-\sqrt{x}}{\sqrt{x+1}-\sqrt{x}}dx = \int \frac{\sqrt{x+1}-\sqrt{x}}{(x+1)-x}dx = \int (\sqrt{x+1} - \sqrt{x})dx =(x+1)1/2dxx1/2dx=(x+1)3/23/2x3/23/2+C= \int (x+1)^{1/2} dx - \int x^{1/2} dx = \frac{(x+1)^{3/2}}{3/2} - \frac{x^{3/2}}{3/2} + C =23(x+1)3/223x3/2+C= \frac{2}{3}(x+1)^{3/2} - \frac{2}{3}x^{3/2} + C

  9. sec2x.cosec2xdx\int sec^2x.cosec^2xdx Rewrite in terms of sinx\sin x and cosx\cos x: sec2xcsc2x=1cos2xsin2x\sec^2x \csc^2x = \frac{1}{\cos^2x \sin^2x} Use the identity sin2x+cos2x=1\sin^2x + \cos^2x = 1 in the numerator: =sin2x+cos2xsin2xcos2x=sin2xsin2xcos2x+cos2xsin2xcos2x=1cos2x+1sin2x=sec2x+csc2x= \frac{\sin^2x + \cos^2x}{\sin^2x \cos^2x} = \frac{\sin^2x}{\sin^2x \cos^2x} + \frac{\cos^2x}{\sin^2x \cos^2x} = \frac{1}{\cos^2x} + \frac{1}{\sin^2x} = \sec^2x + \csc^2x Now integrate: (sec2x+csc2x)dx=sec2xdx+csc2xdx=tanxcotx+C\int (\sec^2x + \csc^2x)dx = \int \sec^2x dx + \int \csc^2x dx = \tan x - \cot x + C

  10. 1+cos2x1+cos2xdx\int \frac{1+cos^2x}{1+cos2x}dx Use the identity 1+cos2x=2cos2x1+\cos2x = 2\cos^2x: 1+cos2x2cos2xdx=(12cos2x+cos2x2cos2x)dx=(12sec2x+12)dx\int \frac{1+\cos^2x}{2\cos^2x}dx = \int \left(\frac{1}{2\cos^2x} + \frac{\cos^2x}{2\cos^2x}\right)dx = \int \left(\frac{1}{2}\sec^2x + \frac{1}{2}\right)dx =12sec2xdx+121dx=12tanx+12x+C= \frac{1}{2}\int \sec^2x dx + \frac{1}{2}\int 1 dx = \frac{1}{2}\tan x + \frac{1}{2}x + C

  11. sinx.sin(π/3x).sin(π/3+x).dx\int sinx.sin(\pi/3 - x).sin(\pi/3 + x).dx Use the trigonometric identity sinAsin(60A)sin(60+A)=14sin3A\sin A \sin(60^\circ-A) \sin(60^\circ+A) = \frac{1}{4}\sin3A. Here A=xA=x and 60=π/360^\circ = \pi/3. So, sinxsin(π/3x)sin(π/3+x)=14sin3x\sin x \sin(\pi/3 - x) \sin(\pi/3 + x) = \frac{1}{4}\sin3x. The integral becomes: 14sin3xdx=14(cos3x3)+C=cos3x12+C\int \frac{1}{4}\sin3x dx = \frac{1}{4} \left(-\frac{\cos3x}{3}\right) + C = -\frac{\cos3x}{12} + C

  12. sin2xdx\int sin^2xdx Use the power reduction formula sin2x=1cos2x2\sin^2x = \frac{1-\cos2x}{2}: 1cos2x2dx=12(1cos2x)dx=12(xsin2x2)+C\int \frac{1-\cos2x}{2}dx = \frac{1}{2}\int (1-\cos2x)dx = \frac{1}{2} \left( x - \frac{\sin2x}{2} \right) + C =x2sin2x4+C= \frac{x}{2} - \frac{\sin2x}{4} + C

  13. sin3xdx\int sin^3xdx Rewrite sin3x=sin2xsinx=(1cos2x)sinx\sin^3x = \sin^2x \cdot \sin x = (1-\cos^2x)\sin x. Let u=cosxu = \cos x, then du=sinxdxdu = -\sin x dx, so sinxdx=du\sin x dx = -du. The integral becomes: (1u2)(du)=(u21)du=u33u+C\int (1-u^2)(-du) = \int (u^2-1)du = \frac{u^3}{3} - u + C Substitute back u=cosxu=\cos x: =cos3x3cosx+C= \frac{\cos^3x}{3} - \cos x + C

  14. x2023+x2025(1+x+x2)(1x+x2)1dx\int \frac{x^{2023} + x^{2025}}{(1+x+x^2)(1-x+x^2)-1}dx Simplify the denominator: (1+x+x2)(1x+x2)=(1+x2+x)(1+x2x)=(1+x2)2x2=1+2x2+x4x2=1+x2+x4(1+x+x^2)(1-x+x^2) = (1+x^2+x)(1+x^2-x) = (1+x^2)^2 - x^2 = 1+2x^2+x^4 - x^2 = 1+x^2+x^4. So the denominator is (1+x2+x4)1=x2+x4=x2(1+x2)(1+x^2+x^4) - 1 = x^2+x^4 = x^2(1+x^2). Factor the numerator: x2023+x2025=x2023(1+x2)x^{2023} + x^{2025} = x^{2023}(1+x^2). The integral becomes: x2023(1+x2)x2(1+x2)dx=x2023x2dx=x2021dx\int \frac{x^{2023}(1+x^2)}{x^2(1+x^2)}dx = \int \frac{x^{2023}}{x^2}dx = \int x^{2021}dx Integrate using the power rule: x2021dx=x20222022+C\int x^{2021}dx = \frac{x^{2022}}{2022} + C

  15. 1+x4048+x80961+x2024+x4048dx\int \frac{1+x^{4048} + x^{8096}}{1+x^{2024} + x^{4048}}dx Let y=x2024y = x^{2024}. Then y2=x4048y^2 = x^{4048} and y4=x8096y^4 = x^{8096}. The integrand becomes 1+y2+y41+y+y2\frac{1+y^2+y^4}{1+y+y^2}. As shown in problem 6, 1+y2+y4=(1+y+y2)(1y+y2)1+y^2+y^4 = (1+y+y^2)(1-y+y^2). So, 1+y2+y41+y+y2=1y+y2\frac{1+y^2+y^4}{1+y+y^2} = 1-y+y^2. Substitute back y=x2024y=x^{2024}: The integrand is 1x2024+(x2024)2=1x2024+x40481 - x^{2024} + (x^{2024})^2 = 1 - x^{2024} + x^{4048}. Now integrate: (1x2024+x4048)dx=xx20252025+x40494049+C\int (1 - x^{2024} + x^{4048})dx = x - \frac{x^{2025}}{2025} + \frac{x^{4049}}{4049} + C

  16. 1+4x+16x1+2x+4xdx\int \frac{1+4^x+16^x}{1+2^x+4^x}dx Let y=2xy = 2^x. Then 4x=(2x)2=y24^x = (2^x)^2 = y^2 and 16x=(2x)4=y416^x = (2^x)^4 = y^4. The integrand becomes 1+y2+y41+y+y2\frac{1+y^2+y^4}{1+y+y^2}. As shown in problem 6, this simplifies to 1y+y21-y+y^2. Substitute back y=2xy=2^x: The integrand is 12x+(2x)2=12x+4x1 - 2^x + (2^x)^2 = 1 - 2^x + 4^x. Now integrate: (12x+4x)dx=1dx2xdx+4xdx\int (1 - 2^x + 4^x)dx = \int 1 dx - \int 2^x dx + \int 4^x dx =x2xln2+4xln4+C= x - \frac{2^x}{\ln2} + \frac{4^x}{\ln4} + C

Section 2: Use any technique to ge-

  1. tan3xdx\int tan^3xdx Rewrite tan3x=tan2xtanx=(sec2x1)tanx=sec2xtanxtanx\tan^3x = \tan^2x \cdot \tan x = (\sec^2x - 1)\tan x = \sec^2x \tan x - \tan x. Integrate term by term: (sec2xtanxtanx)dx=sec2xtanxdxtanxdx\int (\sec^2x \tan x - \tan x)dx = \int \sec^2x \tan x dx - \int \tan x dx For the first integral, let u=tanxu = \tan x, then du=sec2xdxdu = \sec^2x dx. So, udu=u22=tan2x2\int u du = \frac{u^2}{2} = \frac{\tan^2x}{2}. For the second integral, tanxdx=lnsecx\int \tan x dx = \ln|\sec x|. tan3xdx=tan2x2lnsecx+C\int \tan^3x dx = \frac{\tan^2x}{2} - \ln|\sec x| + C

  2. tan4xdx\int tan^4x dx Rewrite tan4x=tan2xtan2x=(sec2x1)tan2x=sec2xtan2xtan2x\tan^4x = \tan^2x \cdot \tan^2x = (\sec^2x - 1)\tan^2x = \sec^2x \tan^2x - \tan^2x. Further substitute tan2x=sec2x1\tan^2x = \sec^2x - 1: =sec2xtan2x(sec2x1)=sec2xtan2xsec2x+1= \sec^2x \tan^2x - (\sec^2x - 1) = \sec^2x \tan^2x - \sec^2x + 1 Integrate term by term: (sec2xtan2xsec2x+1)dx=sec2xtan2xdxsec2xdx+1dx\int (\sec^2x \tan^2x - \sec^2x + 1)dx = \int \sec^2x \tan^2x dx - \int \sec^2x dx + \int 1 dx For the first integral, let u=tanxu = \tan x, then du=sec2xdxdu = \sec^2x dx. So, u2du=u33=tan3x3\int u^2 du = \frac{u^3}{3} = \frac{\tan^3x}{3}. tan4xdx=tan3x3tanx+x+C\int \tan^4x dx = \frac{\tan^3x}{3} - \tan x + x + C

  3. dx1+ex\int \frac{dx}{1+e^x} Multiply the numerator and denominator by exe^{-x}: exex(1+ex)dx=exex+1dx\int \frac{e^{-x}}{e^{-x}(1+e^x)}dx = \int \frac{e^{-x}}{e^{-x}+1}dx Let u=ex+1u = e^{-x}+1. Then du=exdxdu = -e^{-x}dx. The integral becomes: duu=lnu+C\int \frac{-du}{u} = -\ln|u| + C Substitute back u=ex+1u = e^{-x}+1: =lnex+1+C= -\ln|e^{-x}+1| + C (Alternatively, lnex1+ex+C\ln\left|\frac{e^x}{1+e^x}\right| + C)

  4. sinsinx+\int \frac{sin}{sinx +} This integral is incomplete. Based on the similar question (Q16: sinx+sin2xcosx+cos2xdx\int \frac{sinx+sin2x}{cosx+cos2x}dx) and its given answer, it is likely that the intended problem was sinx+2sin2xcosx+cos2xdx\int \frac{\sin x + 2\sin 2x}{\cos x + \cos 2x} dx. Assuming the intended question is sinx+2sin2xcosx+cos2xdx\int \frac{\sin x + 2\sin 2x}{\cos x + \cos 2x} dx: Let u=cosx+cos2xu = \cos x + \cos 2x. Then du=(sinx2sin2x)dx=(sinx+2sin2x)dxdu = (-\sin x - 2\sin 2x)dx = -(\sin x + 2\sin 2x)dx. So, the integral becomes: duu=lnu+C\int \frac{-du}{u} = -\ln|u| + C Substitute back u=cosx+cos2xu = \cos x + \cos 2x: =lncosx+cos2x+C= -\ln|\cos x + \cos 2x| + C


Explanation of the solution:

The problems involve various integration techniques, primarily focusing on algebraic manipulation, trigonometric identities, and standard integral formulas.

  • Problems 1, 2, 16 (Section 1): Involve simplifying exponential terms and using the formula axdx=axlna+C\int a^x dx = \frac{a^x}{\ln a} + C.
  • Problems 3, 4, 5, 9, 10, 11, 12, 13 (Section 1) and 1, 2 (Section 2): Utilize trigonometric identities (e.g., 1+tan2x=sec2x1+\tan^2x=\sec^2x, sin2x=1cos2x2\sin^2x = \frac{1-\cos2x}{2}, sinAsinB\sin A \sin B product-to-sum, sin3x=sinx(1cos2x)\sin^3x = \sin x(1-\cos^2x)) to transform the integrand into simpler forms that can be integrated using basic formulas like sec2xdx=tanx\int \sec^2x dx = \tan x, cosaxdx=sinaxa\int \cos ax dx = \frac{\sin ax}{a}, sinaxdx=cosaxa\int \sin ax dx = -\frac{\cos ax}{a}, or substitution.
  • Problems 6, 14, 15 (Section 1): Involve algebraic factorization using the identity 1+x2+x4=(1+x+x2)(1x+x2)1+x^2+x^4 = (1+x+x^2)(1-x+x^2) to simplify rational functions before integrating polynomials.
  • Problem 7 (Section 1): Uses a partial fraction decomposition trick by adding and subtracting terms in the numerator to split the fraction into simpler integrable forms.
  • Problem 8 (Section 1): Involves rationalizing the denominator for expressions with square roots.
  • Problem 3 (Section 2): Uses substitution (u=exu=e^x) or multiplying by exe^{-x} to convert the integrand into a form suitable for logarithmic integration.
  • Problem 4 (Section 2): (Assuming the completed form) is a direct application of f(x)f(x)dx=lnf(x)+C\int \frac{f'(x)}{f(x)}dx = \ln|f(x)|+C by recognizing the numerator as the negative derivative of the denominator.

Answer:

The solutions for the integrals are as follows:

Section 1:

  1. (n!)xln(n!)+C\frac{(n!)^x}{\ln(n!)} + C
  2. (4/3)xln(4/3)+C\frac{(4/3)^x}{\ln(4/3)} + C
  3. 12lnsec2x+tan2x+C\frac{1}{2}\ln|\sec2x + \tan2x| + C
  4. tanxx+C\tan x - x + C
  5. 3x8sin2x4+sin4x32+C\frac{3x}{8} - \frac{\sin2x}{4} + \frac{\sin4x}{32} + C
  6. xx22+x33+Cx - \frac{x^2}{2} + \frac{x^3}{3} + C
  7. 1xtan1x+C-\frac{1}{x} - \tan^{-1}x + C
  8. 23(x+1)3/223x3/2+C\frac{2}{3}(x+1)^{3/2} - \frac{2}{3}x^{3/2} + C
  9. tanxcotx+C\tan x - \cot x + C
  10. 12tanx+12x+C\frac{1}{2}\tan x + \frac{1}{2}x + C
  11. cos3x12+C-\frac{\cos3x}{12} + C
  12. x2sin2x4+C\frac{x}{2} - \frac{\sin2x}{4} + C
  13. cos3x3cosx+C\frac{\cos^3x}{3} - \cos x + C
  14. x20222022+C\frac{x^{2022}}{2022} + C
  15. xx20252025+x40494049+Cx - \frac{x^{2025}}{2025} + \frac{x^{4049}}{4049} + C
  16. x2xln2+4xln4+Cx - \frac{2^x}{\ln2} + \frac{4^x}{\ln4} + C

Section 2:

  1. tan2x2lnsecx+C\frac{\tan^2x}{2} - \ln|\sec x| + C
  2. tan3x3tanx+x+C\frac{\tan^3x}{3} - \tan x + x + C
  3. lnex+1+C-\ln|e^{-x}+1| + C (or lnex1+ex+C\ln\left|\frac{e^x}{1+e^x}\right| + C)
  4. Assuming the question was sinx+2sin2xcosx+cos2xdx\int \frac{\sin x + 2\sin 2x}{\cos x + \cos 2x} dx: lncosx+cos2x+C-\ln|\cos x + \cos 2x| + C
Explanation

Solution

The problems involve various integration techniques, primarily focusing on algebraic manipulation, trigonometric identities, and standard integral formulas.

  • Problems 1, 2, 16 (Section 1): Involve simplifying exponential terms and using the formula axdx=axlna+C\int a^x dx = \frac{a^x}{\ln a} + C.
  • Problems 3, 4, 5, 9, 10, 11, 12, 13 (Section 1) and 1, 2 (Section 2): Utilize trigonometric identities (e.g., 1+tan2x=sec2x1+\tan^2x=\sec^2x, sin2x=1cos2x2\sin^2x = \frac{1-\cos2x}{2}, sinAsinB\sin A \sin B product-to-sum, sin3x=sinx(1cos2x)\sin^3x = \sin x(1-\cos^2x)) to transform the integrand into simpler forms that can be integrated using basic formulas like sec2xdx=tanx\int \sec^2x dx = \tan x, cosaxdx=sinaxa\int \cos ax dx = \frac{\sin ax}{a}, sinaxdx=cosaxa\int \sin ax dx = -\frac{\cos ax}{a}, or substitution.
  • Problems 6, 14, 15 (Section 1): Involve algebraic factorization using the identity 1+x2+x4=(1+x+x2)(1x+x2)1+x^2+x^4 = (1+x+x^2)(1-x+x^2) to simplify rational functions before integrating polynomials.
  • Problem 7 (Section 1): Uses a partial fraction decomposition trick by adding and subtracting terms in the numerator to split the fraction into simpler integrable forms.
  • Problem 8 (Section 1): Involves rationalizing the denominator for expressions with square roots.
  • Problem 3 (Section 2): Uses substitution (u=exu=e^x) or multiplying by exe^{-x} to convert the integrand into a form suitable for logarithmic integration.
  • Problem 4 (Section 2): (Assuming the completed form) is a direct application of f(x)f(x)dx=lnf(x)+C\int \frac{f'(x)}{f(x)}dx = \ln|f(x)|+C by recognizing the numerator as the negative derivative of the denominator.