Question
Question: Maximum value of the expression \[2\sin x+4\cos x+3\] is A. \[2\sqrt{5}+3\] B. \[2\sqrt{5}-3\] ...
Maximum value of the expression 2sinx+4cosx+3 is
A. 25+3
B. 25−3
C. 5+3
D. None of these.
Solution
Hint: Use trigonometric R-method to find the maxima of a given expression. Find the formula of the R-method and compare it with the expression given. Then solve it to get the maximum value.
“Complete step-by-step answer:”
We have been given the expression, 2sinx+4cosx+3.
So, let us put, f(x)=2sinx+4cosx+3.
The maximum value of asinx+bcosxis equal to a2+b2.
This equation (asinx+bcosx) is similar to the expression, 2sinx+4cosx+3.
Let us use the Trigonometric R-method to solve this expression.
The R-method is used to find the extrema (maxima and minimum) of combinations of trigonometric function.
Let us consider, y=Asinx+bsinx.
Thus by using the R-formula, let us express y as, y=asinx+bcosx=Rsin(x+θ).
For maximum value of y, sin(x+θ)=1.
∴Maximum value of, y=R(1)=R.
We know, sin(a+b)=sinacosb+cosasinb.
We need to find the values of R.
asinx+bcosx=(Rcosθ)sinx+(Rsinθ)cosx
By comparing we can see that, a=Rcosθ and b=Rsinθ.