Solveeit Logo

Question

Question: Maximum value of the expression \[2\sin x+4\cos x+3\] is A. \[2\sqrt{5}+3\] B. \[2\sqrt{5}-3\] ...

Maximum value of the expression 2sinx+4cosx+32\sin x+4\cos x+3 is
A. 25+32\sqrt{5}+3
B. 2532\sqrt{5}-3
C. 5+3\sqrt{5}+3
D. None of these.

Explanation

Solution

Hint: Use trigonometric R-method to find the maxima of a given expression. Find the formula of the R-method and compare it with the expression given. Then solve it to get the maximum value.

“Complete step-by-step answer:”
We have been given the expression, 2sinx+4cosx+32\sin x+4\cos x+3.
So, let us put, f(x)=2sinx+4cosx+3f\left( x \right)=2\sin x+4\cos x+3.
The maximum value of asinx+bcosxa\sin x+b\cos xis equal to a2+b2\sqrt{{{a}^{2}}+{{b}^{2}}}.
This equation (asinx+bcosx)\left( a\sin x+b\cos x \right) is similar to the expression, 2sinx+4cosx+32\sin x+4\cos x+3.
Let us use the Trigonometric R-method to solve this expression.
The R-method is used to find the extrema (maxima and minimum) of combinations of trigonometric function.
Let us consider, y=Asinx+bsinxy=A\sin x+b\sin x.
Thus by using the R-formula, let us express y as, y=asinx+bcosx=Rsin(x+θ)y=a\sin x+b\cos x=R\sin \left( x+\theta \right).
For maximum value of y, sin(x+θ)=1\sin \left( x+\theta \right)=1.
\therefore Maximum value of, y=R(1)=Ry=R\left( 1 \right)=R.
We know, sin(a+b)=sinacosb+cosasinb\sin \left( a+b \right)=\sin a\cos b+\cos a\sin b.
We need to find the values of R.
asinx+bcosx=(Rcosθ)sinx+(Rsinθ)cosxa\sin x+b\cos x=\left( R\cos \theta \right)\sin x+\left( R\sin \theta \right)\cos x
By comparing we can see that, a=Rcosθa=R\cos \theta and b=Rsinθb=R\sin \theta .

& \therefore \dfrac{b}{a}=\dfrac{R\sin \theta }{R\cos \theta }=\tan \theta \\\ & \therefore \tan \theta =\dfrac{b}{a} \\\ & \Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{b}{a} \right) \\\ \end{aligned}$$ $$a=R\cos \theta $$ $$\begin{aligned} & R=\dfrac{a}{\cos \theta }=\dfrac{a}{\cos {{\tan }^{-1}}\left( \dfrac{b}{a} \right)}=\dfrac{a}{\dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}}}} \\\ & R=\sqrt{{{a}^{2}}+{{b}^{2}}} \\\ & \therefore a\sin x+b\cos x=\sqrt{{{a}^{2}}+{{b}^{2}}} \\\ \end{aligned}$$ So, value of a = 2 and b = 4. $$\begin{aligned} & f\left( x \right)=2\sin x+4\cos x+3 \\\ & f\left( x \right)=\sqrt{{{a}^{2}}+{{b}^{2}}}+3 \\\ & f\left( x \right)=\sqrt{{{2}^{2}}+{{4}^{2}}}+3 \\\ & \therefore f\left( x \right)=\sqrt{20}+3=\sqrt{2\times 2\times 5}+3 \\\ & f\left( x \right)=2\sqrt{5}+3 \\\ \end{aligned}$$ Therefore, the maximum value of f (x) becomes, $$\sqrt{20}+3=2\sqrt{5}+3$$. Hence, option (a) is the correct answer. Note: Maxima and Minima are important concepts in trigonometry. Here we did the proof for finding maximum value. You can simply apply the expression in the given function f (x) as they are similar. If $$f\left( x \right)=2\sin x+4\cos x$$, then $$f\left( x \right)=\sqrt{{{a}^{2}}+{{b}^{2}}}=\sqrt{{{2}^{2}}+{{4}^{2}}}=\sqrt{20}$$. The maximum value of f (x) is $$\sqrt{20}$$.