Solveeit Logo

Question

Question: Maximum value of $|\sqrt{x^4+3x^2+4x+5}-\sqrt{x^4-5x^2-2x+10}|$ is equal to:...

Maximum value of x4+3x2+4x+5x45x22x+10|\sqrt{x^4+3x^2+4x+5}-\sqrt{x^4-5x^2-2x+10}| is equal to:

Answer

5

Explanation

Solution

We need to find the maximum value of

E(x)=x4+3x2+4x+5x45x22x+10.E(x)=\left|\sqrt{x^4+3x^2+4x+5}-\sqrt{x^4-5x^2-2x+10}\right|.

A useful method is to “rationalize” the difference. Write

E(x)=P(x)Q(x)=P(x)Q(x)P(x)+Q(x),E(x)=\left|\sqrt{P(x)}-\sqrt{Q(x)}\right|=\left|\frac{P(x)-Q(x)}{\sqrt{P(x)}+\sqrt{Q(x)}}\right|,

where

P(x)=x4+3x2+4x+5,Q(x)=x45x22x+10.P(x)=x^4+3x^2+4x+5,\quad Q(x)=x^4-5x^2-2x+10.

Notice that

P(x)Q(x)=[x4+3x2+4x+5][x45x22x+10]=8x2+6x5.P(x)-Q(x)=\Bigl[x^4+3x^2+4x+5\Bigr]-\Bigl[x^4-5x^2-2x+10\Bigr]=8x^2+6x-5.

Thus,

E(x)=8x2+6x5P(x)+Q(x).E(x)=\left|\frac{8x^2+6x-5}{\sqrt{P(x)}+\sqrt{Q(x)}}\right|.

For large x|x| the dominant x4x^4 terms inside the radicals yield

P(x)x2,Q(x)x2,\sqrt{P(x)}\sim x^2,\quad \sqrt{Q(x)}\sim x^2,

so that

E(x)8x22x2=4.E(x)\sim \left|\frac{8x^2}{2x^2}\right|=4.

It is then natural to suspect that the maximum occurs for a finite xx. By testing suitable values (for example, x=2x=2 gives E(2)4.99E(2)\approx 4.99 and x2.1x\approx 2.1 gives E(2.1)5E(2.1)\approx 5) one finds that the maximum possible value of E(x)E(x) is 55.