Question
Question: Maximum value of sinx-cosx is equal to \[\begin{aligned} & A.\sqrt{2} \\\ & B.1 \\\ &...
Maximum value of sinx-cosx is equal to
& A.\sqrt{2} \\\ & B.1 \\\ & C.0 \\\ & D.\text{None of these} \\\ \end{aligned}$$Solution
In this question, we need to find the maximum value of sinx-cosx. Suppose f(x)=sinx−cosx for this, we will use a second derivative test. We will first find the derivative of a given function i.e. f'(x). Then we will put f'(x) = 0 and find the value of x. Then we will again find the derivative of the function i.e. f''(x). Using value of x found before in f''(x). We will check if the point gives maximum value or minimum value. If f''(x) < 0 then x gives maximum value and if f''(x) > 0 then x gives minimum value. Using the value of x which gives maximum value we will find maximum f(x). We will use following properties,
(i)dxdsinx=cosx(ii)dxdcosx=−sinx(iii)tanx=cosxsinx(iv)sin(π−4π)=sin4π and cos(π−4π)=−cos4π
Complete step by step answer:
Here we are given the function as sinx-cosx. Let us suppose it to be equal to f(x).
We get f′(x)=dxd(sinx−cosx).
Now let us find the derivative of a given function.
Differentiating both sides w.r.t x, we get f′(x)=dxd(sinx−cosx).
We know that dxdsinx=cosx and dxdcosx=−sinx so we get, f′(x)=cosx−(−sinx)⇒f′(x)=cosx+sinx⋯⋯⋯(2).
Now again let us find the derivative.
Differentiating w.r.t x we get f′′(x)=dxd(cosx+sinx).
Again using dxdsinx=cosx and dxdcosx=−sinx we get, f′′(x)=−sinx+cosx⋯⋯⋯(3).
Now let us equate equation (2) to zero to find the value of x, we get f′(x)=0⇒cosx+sinx=0⇒cosx=−sinx.
Dividing by cos x on both sides we get, 1=cosx−sinx.
Using the property of tanθ i.e. tanx=cosxsinx we get, tanx=−1.
We know that tanθ is negative in the second quadrant and tan4π=1. So in the second quadrant we will have tan(π−4π)=−tan4π=−1.
Hence tan43π=−1.
Therefore, x=43π.
Let us check if it gives maximum value or not.
Putting x=43π in (3) we get, f′′(43π)=−sin43π+cos43π.
It can be written as −sin(π−4π)+cos(π−4π).
We know sin(π−θ)=sinθ and cos(π−θ)=−cosθ so we get,
f′′(43π)=−sin4π−cos4π.
Since sin4π=21=cos4π so we get, f′′(43π)=−21−21⇒f′′(43π)=−22 < 0.
So x=43π gives the maximum value of f(x).
Putting x=43π in f(x) we get f(43π)=sin43π−cos43π.
As evaluated earlier sin43π=21 and cos43π=−21 so we get,
f(43π)=21−(−21)⇒21+21=22.
Splitting 2 into 2×2 we get,
f(43π)=22×2=2.
Hence the maximum value of sinx-cosx is 2.
So, the correct answer is “Option A”.
Note: Students should know the values of tan4π,sin4π,cos4π from the trigonometric ratio table. Note that there are many more values of θ for which tanθ=−1. They can be found by formula tanθ=tanα⇒θ=nπ±α,n=0,1,2,…….