Solveeit Logo

Question

Question: Maximum value of sinx-cosx is equal to \[\begin{aligned} & A.\sqrt{2} \\\ & B.1 \\\ &...

Maximum value of sinx-cosx is equal to

& A.\sqrt{2} \\\ & B.1 \\\ & C.0 \\\ & D.\text{None of these} \\\ \end{aligned}$$
Explanation

Solution

In this question, we need to find the maximum value of sinx-cosx. Suppose f(x)=sinxcosxf\left( x \right)=\sin x-\cos x for this, we will use a second derivative test. We will first find the derivative of a given function i.e. f'(x). Then we will put f'(x) = 0 and find the value of x. Then we will again find the derivative of the function i.e. f''(x). Using value of x found before in f''(x). We will check if the point gives maximum value or minimum value. If f''(x) < 0 then x gives maximum value and if f''(x) > 0 then x gives minimum value. Using the value of x which gives maximum value we will find maximum f(x). We will use following properties,
(i)ddxsinx=cosx (ii)ddxcosx=sinx (iii)tanx=sinxcosx (iv)sin(ππ4)=sinπ4 and cos(ππ4)=cosπ4 \begin{aligned} & \left( i \right)\dfrac{d}{dx}\sin x=\cos x \\\ & \left( ii \right)\dfrac{d}{dx}\cos x=-\sin x \\\ & \left( iii \right)\tan x=\dfrac{\sin x}{\cos x} \\\ & \left( iv \right)\sin \left( \pi -\dfrac{\pi }{4} \right)=\sin \dfrac{\pi }{4}\text{ and }\cos \left( \pi -\dfrac{\pi }{4} \right)=-\cos \dfrac{\pi }{4} \\\ \end{aligned}

Complete step by step answer:
Here we are given the function as sinx-cosx. Let us suppose it to be equal to f(x).
We get f(x)=ddx(sinxcosx)f'\left( x \right)=\dfrac{d}{dx}\left( \sin x-\cos x \right).
Now let us find the derivative of a given function.
Differentiating both sides w.r.t x, we get f(x)=ddx(sinxcosx)f'\left( x \right)=\dfrac{d}{dx}\left( \sin x-\cos x \right).
We know that ddxsinx=cosx and ddxcosx=sinx\dfrac{d}{dx}\sin x=\cos x\text{ and }\dfrac{d}{dx}\cos x=-\sin x so we get, f(x)=cosx(sinx)f(x)=cosx+sinx(2)f'\left( x \right)=\cos x-\left( -\sin x \right)\Rightarrow f'\left( x \right)=\cos x+\sin x\cdots \cdots \cdots \left( 2 \right).
Now again let us find the derivative.
Differentiating w.r.t x we get f(x)=ddx(cosx+sinx)f''\left( x \right)=\dfrac{d}{dx}\left( \cos x+\sin x \right).
Again using ddxsinx=cosx and ddxcosx=sinx\dfrac{d}{dx}\sin x=\cos x\text{ and }\dfrac{d}{dx}\cos x=-\sin x we get, f(x)=sinx+cosx(3)f''\left( x \right)=-\sin x+\cos x\cdots \cdots \cdots \left( 3 \right).
Now let us equate equation (2) to zero to find the value of x, we get f(x)=0cosx+sinx=0cosx=sinxf'\left( x \right)=0\Rightarrow \cos x+\sin x=0\Rightarrow \cos x=-\sin x.
Dividing by cos x on both sides we get, 1=sinxcosx1=\dfrac{-\sin x}{\cos x}.
Using the property of tanθ\tan \theta i.e. tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x} we get, tanx=1\tan x=-1.
We know that tanθ\tan \theta is negative in the second quadrant and tanπ4=1\tan \dfrac{\pi }{4}=1. So in the second quadrant we will have tan(ππ4)=tanπ4=1\tan \left( \pi -\dfrac{\pi }{4} \right)=-\tan \dfrac{\pi }{4}=-1.
Hence tan3π4=1\tan \dfrac{3\pi }{4}=-1.
Therefore, x=3π4x=\dfrac{3\pi }{4}.
Let us check if it gives maximum value or not.
Putting x=3π4x=\dfrac{3\pi }{4} in (3) we get, f(3π4)=sin3π4+cos3π4f''\left( \dfrac{3\pi }{4} \right)=-\sin \dfrac{3\pi }{4}+\cos \dfrac{3\pi }{4}.
It can be written as sin(ππ4)+cos(ππ4)-\sin \left( \pi -\dfrac{\pi }{4} \right)+\cos \left( \pi -\dfrac{\pi }{4} \right).
We know sin(πθ)=sinθ and cos(πθ)=cosθ\sin \left( \pi -\theta \right)=\sin \theta \text{ and }\cos \left( \pi -\theta \right)=-\cos \theta so we get,
f(3π4)=sinπ4cosπ4f''\left( \dfrac{3\pi }{4} \right)=-\sin \dfrac{\pi }{4}-\cos \dfrac{\pi }{4}.
Since sinπ4=12=cosπ4\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}=\cos \dfrac{\pi }{4} so we get, f(3π4)=1212f(3π4)=22 < 0f''\left( \dfrac{3\pi }{4} \right)=-\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}\Rightarrow f''\left( \dfrac{3\pi }{4} \right)=-\dfrac{2}{\sqrt{2}}\text{ }<\text{ }0.
So x=3π4x=\dfrac{3\pi }{4} gives the maximum value of f(x).
Putting x=3π4x=\dfrac{3\pi }{4} in f(x) we get f(3π4)=sin3π4cos3π4f\left( \dfrac{3\pi }{4} \right)=\sin \dfrac{3\pi }{4}-\cos \dfrac{3\pi }{4}.
As evaluated earlier sin3π4=12 and cos3π4=12\sin \dfrac{3\pi }{4}=\dfrac{1}{\sqrt{2}}\text{ and }\cos \dfrac{3\pi }{4}=-\dfrac{1}{\sqrt{2}} so we get,
f(3π4)=12(12)12+12=22f\left( \dfrac{3\pi }{4} \right)=\dfrac{1}{\sqrt{2}}-\left( -\dfrac{1}{\sqrt{2}} \right)\Rightarrow \dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}.
Splitting 2 into 2×2\sqrt{2}\times \sqrt{2} we get,
f(3π4)=2×22=2f\left( \dfrac{3\pi }{4} \right)=\dfrac{\sqrt{2}\times \sqrt{2}}{\sqrt{2}}=\sqrt{2}.
Hence the maximum value of sinx-cosx is 2\sqrt{2}.

So, the correct answer is “Option A”.

Note: Students should know the values of tanπ4,sinπ4,cosπ4\tan \dfrac{\pi }{4},\sin \dfrac{\pi }{4},\cos \dfrac{\pi }{4} from the trigonometric ratio table. Note that there are many more values of θ\theta for which tanθ=1\tan \theta =-1. They can be found by formula tanθ=tanαθ=nπ±α,n=0,1,2,\tan \theta =\tan \alpha \Rightarrow \theta =n\pi \pm \alpha ,n=0,1,2,\ldots \ldots .