Solveeit Logo

Question

Question: Maximum value of \(\left( \frac{1}{x} \right)^{x}\) is...

Maximum value of (1x)x\left( \frac{1}{x} \right)^{x} is

A

(e)e(e)^{e}

B

(e)1/e(e)^{1/e}

C

(e)e(e)^{- e}

D

(1e)e\left( \frac{1}{e} \right)^{e}

Answer

(e)1/e(e)^{1/e}

Explanation

Solution

f(x)=(1x)xf(x) = \left( \frac{1}{x} \right)^{x}f(x)=(1x)x(log1x1)f^{'}(x) = \left( \frac{1}{x} \right)^{x}\left( \log\frac{1}{x} - 1 \right)

f(x)=0f^{'}(x) = 0log1x=1=loge\log\frac{1}{x} = 1 = \log e1x=e\frac{1}{x} = ex=1ex = \frac{1}{e}.

Therefore, maximum value of function is e1/ee^{1/e}.