Solveeit Logo

Question

Mathematics Question on Application of derivatives

Maximum slope of the curve y=x3+3x2+9x27y = -x^3 + 3x^2 + 9x - 27 is

A

00

B

1212

C

1616

D

3232

Answer

1212

Explanation

Solution

y=x3+3x2+9x27y = -x^3 + 3x^2 + 9x -27 Slope =dydx=m=3x2+6x+9= \frac{dy}{dx} = m = - 3 x^{ 2} + 6 x + 9 Now, dmdx=6x+6\frac{dm}{dx} = - 6x + 6 Now, dmdx=0\frac{dm}{dx} = 0 6x+6=0\Rightarrow -6x + 6 = 0 x=1\Rightarrow x = 1 Now, d2mdx2=6<0x\frac{d^{2}m}{dx^{2}} =-6 < 0 \,\forall\, x x=1\therefore x = 1 is a point of local maximum. \therefore Maximum slope =3(1)2+6(1)+9=12= -3\left(1\right)^{2 }+ 6\left(1\right) + 9 = 12