Solveeit Logo

Question

Question: Maximum heat Is released In mixing of...

Maximum heat Is released In mixing of

A

400 mL 0.3 M HCI + 300 mL 0.1 M NaOH

B

200 mL 0.3 M H2SO4 + 200 mL 0.6 M NaOH

C

100 mL 0.8 M HCI + 500 mL 0.1 M Ca(OH)2

D

500 mL 0.4 M HCI + 100 mL 0.2 M NaOH

Answer

B. 200 mL 0.3 M H2SO4 + 200 mL 0.6 M NaOH

Explanation

Solution

The heat released during the neutralization of a strong acid and a strong base is approximately constant per mole of water formed (around -57.3 kJ/mol). Therefore, maximum heat release corresponds to the maximum moles of water formed. We calculate the moles of H+H^+ ions from the acid and OHOH^- ions from the base for each option. The number of moles of water formed is determined by the limiting reactant, which is the minimum of the moles of H+H^+ and OHOH^-.

  • Option A: Moles of H+H^+ from HCl = 0.4 L×0.3 M=0.12 mol0.4 \text{ L} \times 0.3 \text{ M} = 0.12 \text{ mol}. Moles of OHOH^- from NaOH = 0.3 L×0.1 M=0.03 mol0.3 \text{ L} \times 0.1 \text{ M} = 0.03 \text{ mol}. Moles of H2OH_2O formed = min(0.12,0.03)=0.03 mol\min(0.12, 0.03) = 0.03 \text{ mol}.
  • Option B: Moles of H+H^+ from H2SO4H_2SO_4 = 0.2 L×0.3 M×2=0.12 mol0.2 \text{ L} \times 0.3 \text{ M} \times 2 = 0.12 \text{ mol}. Moles of OHOH^- from NaOH = 0.2 L×0.6 M=0.12 mol0.2 \text{ L} \times 0.6 \text{ M} = 0.12 \text{ mol}. Moles of H2OH_2O formed = min(0.12,0.12)=0.12 mol\min(0.12, 0.12) = 0.12 \text{ mol}.
  • Option C: Moles of H+H^+ from HCl = 0.1 L×0.8 M=0.08 mol0.1 \text{ L} \times 0.8 \text{ M} = 0.08 \text{ mol}. Moles of OHOH^- from Ca(OH)2Ca(OH)_2 = 0.5 L×0.1 M×2=0.10 mol0.5 \text{ L} \times 0.1 \text{ M} \times 2 = 0.10 \text{ mol}. Moles of H2OH_2O formed = min(0.08,0.10)=0.08 mol\min(0.08, 0.10) = 0.08 \text{ mol}.
  • Option D: Moles of H+H^+ from HCl = 0.5 L×0.4 M=0.20 mol0.5 \text{ L} \times 0.4 \text{ M} = 0.20 \text{ mol}. Moles of OHOH^- from NaOH = 0.1 L×0.2 M=0.02 mol0.1 \text{ L} \times 0.2 \text{ M} = 0.02 \text{ mol}. Moles of H2OH_2O formed = min(0.20,0.02)=0.02 mol\min(0.20, 0.02) = 0.02 \text{ mol}.

Comparing the moles of water formed (0.03 mol, 0.12 mol, 0.08 mol, 0.02 mol), Option B yields the maximum moles of water (0.12 mol), and hence the maximum heat release.