Solveeit Logo

Question

Question: Maximum distance from origin of the points z satisfying the relation \|z + 1/z\| = 1 is –...

Maximum distance from origin of the points z satisfying the relation |z + 1/z| = 1 is –

A

(5\sqrt{5} + 1)/2

B

(5\sqrt{5}– 1)/2

C

3 – 5\sqrt{5}

D

(3 +5\sqrt{5})/2

Answer

(5\sqrt{5} + 1)/2

Explanation

Solution

Sol. We may assume |z| ³ 1z\frac{1}{|z|} for otherwise, we may interchange z and 1/z in the given equation. We have

z| – 1z\frac{1}{|z|} = z1z\left| |z|–\frac{1}{|z|} \right|

= z1z\left| |z|–\left| –\frac{1}{|z|} \right| \right|£z(1z)\left| z–\left( - \frac{1}{z} \right) \right|

= |z + 1/z| = 1

Thus, |z| – 1z\frac{1}{|z|}£ 1 Ž |z|2 – |z| – 1 £ 0

Ž |z| lies between the roots of

|z|2 – |z| – 1 = 0 Ž 12\frac{1}{2} (1 – 5\sqrt{5}) £ |z| £ 12\frac{1}{2} (1 + 5\sqrt{5})

As z ¹ 0 |z| > 0, therefore, 0 < |z| £ 12\frac{1}{2} (5\sqrt{5} + 1)

Taking z = i2\frac{i}{2} (5\sqrt{5} + 1), we get z+1z\left| z + \frac{1}{z} \right| = 1.

Thus, maximum possible value of |z| is (5\sqrt{5} + 1)/2.