Solveeit Logo

Question

Question: \max_{0\leq x\leq\pi}\{x-2\sin x \cos x + \frac{1}{3}\sin 3x\} =...

\max_{0\leq x\leq\pi}{x-2\sin x \cos x + \frac{1}{3}\sin 3x} =

Answer

\frac{5\pi}{6} + \frac{\sqrt{3}}{2} + \frac{1}{3}

Explanation

Solution

The function is f(x)=xsin2x+13sin3xf(x) = x - \sin 2x + \frac{1}{3}\sin 3x. Its derivative is f(x)=12cos2x+cos3xf'(x) = 1 - 2\cos 2x + \cos 3x. Setting f(x)=0f'(x) = 0 and using trigonometric identities leads to (4cos2x3)(cosx1)=0(4\cos^2 x - 3)(\cos x - 1) = 0. The critical points in [0,π][0, \pi] are x=0,x=π6,x=5π6x=0, x=\frac{\pi}{6}, x=\frac{5\pi}{6}. Evaluating f(x)f(x) at these points and the endpoint x=πx=\pi shows that f(5π6)f(\frac{5\pi}{6}) is the maximum value.