Solveeit Logo

Question

Question: max of f(x)= (x-2)^2024 . (3-x)^2025...

max of f(x)= (x-2)^2024 . (3-x)^2025

Answer

The maximum value of f(x)f(x) is

(20244049)2024(20254049)2025,\left(\frac{2024}{4049}\right)^{2024}\left(\frac{2025}{4049}\right)^{2025},

attained at

x=101224049.x=\frac{10122}{4049}.
Explanation

Solution

We wish to maximize

f(x)=(x2)2024(3x)2025.f(x)= (x-2)^{2024}(3-x)^{2025}.

Since (x2)2024(x-2)^{2024} is always nonnegative and (3x)2025(3-x)^{2025} is positive for x<3x<3 (and negative for x>3x>3), the maximum must occur for 2<x<32<x<3.

Take the logarithm:

lnf(x)=2024ln(x2)+2025ln(3x).\ln f(x) = 2024\ln(x-2) + 2025\ln(3-x).

Differentiate with respect to xx:

ddxlnf(x)=2024x220253x=0.\frac{d}{dx} \ln f(x) = \frac{2024}{x-2} - \frac{2025}{3-x}=0.

Setting the derivative equal to zero gives:

2024x2=20253x.\frac{2024}{x-2} = \frac{2025}{3-x}.

Cross-multiplying,

2024(3x)=2025(x2).2024(3-x) = 2025(x-2).

Expanding,

60722024x=2025x4050.6072 - 2024x = 2025x - 4050.

Collecting like terms,

6072+4050=2025x+2024x=4049x,6072 + 4050 = 2025x + 2024x = 4049x,

so

4049x=10122x=101224049.4049x = 10122 \quad\Longrightarrow\quad x = \frac{10122}{4049}.

Now, calculate:

x2=1012240492=1012280984049=20244049,x-2 = \frac{10122}{4049} -2 = \frac{10122-8098}{4049} = \frac{2024}{4049}, 3x=3101224049=12147101224049=20254049.3-x = 3 - \frac{10122}{4049} = \frac{12147-10122}{4049} = \frac{2025}{4049}.

Thus, the maximum value is

fmax=(20244049)2024(20254049)2025.f_{\max} = \left(\frac{2024}{4049}\right)^{2024}\left(\frac{2025}{4049}\right)^{2025}.