Question
Question: max of f(x)= (x-2)^2024 . (3-x)^2025...
max of f(x)= (x-2)^2024 . (3-x)^2025
Answer
The maximum value of f(x) is
(40492024)2024(40492025)2025,attained at
x=404910122.Explanation
Solution
We wish to maximize
f(x)=(x−2)2024(3−x)2025.Since (x−2)2024 is always nonnegative and (3−x)2025 is positive for x<3 (and negative for x>3), the maximum must occur for 2<x<3.
Take the logarithm:
lnf(x)=2024ln(x−2)+2025ln(3−x).Differentiate with respect to x:
dxdlnf(x)=x−22024−3−x2025=0.Setting the derivative equal to zero gives:
x−22024=3−x2025.Cross-multiplying,
2024(3−x)=2025(x−2).Expanding,
6072−2024x=2025x−4050.Collecting like terms,
6072+4050=2025x+2024x=4049x,so
4049x=10122⟹x=404910122.Now, calculate:
x−2=404910122−2=404910122−8098=40492024, 3−x=3−404910122=404912147−10122=40492025.Thus, the maximum value is
fmax=(40492024)2024(40492025)2025.