Solveeit Logo

Question

Question: Matrix \({A_r} = \left[ {\begin{array}{*{20}{l}} r&{r - 1} \\\ {r - 1}&r; \end{array}} \...

Matrix {A_r} = \left[ {\begin{array}{*{20}{l}} r&{r - 1} \\\ {r - 1}&r; \end{array}} \right] where r=1,2,3,........r = 1,2,3,........ and if r=1r=100Ar=(10)k\sum\limits_{r = 1}^{r = 100} {\left| {{A_r}} \right|} = {\left( {\sqrt {10} } \right)^k} so find kk

Explanation

Solution

Ar\left| {{A_r}} \right| denotes the determinant of the matrix Ar{A_r} so first of all we need to find the determinant of the matrix Ar{A_r} in the terms of rr then put r=1,2,3,........r = 1,2,3,........ and so on and then we will get the definite pattern and get our answer.

Complete step by step solution:
Here we are given that {A_r} = \left[ {\begin{array}{*{20}{l}} r&{r - 1} \\\ {r - 1}&r; \end{array}} \right] where r=1,2,3,........r = 1,2,3,........ and now we are given the condition that if r=1r=100Ar=(10)k\sum\limits_{r = 1}^{r = 100} {\left| {{A_r}} \right|} = {\left( {\sqrt {10} } \right)^k} then we need to find the value of kk
As Ar\left| {{A_r}} \right| denotes the determinant of the matrix Ar{A_r} so first of all we need to find the determinant of the matrix Ar{A_r} in the terms of rr
Here r=1r=100Ar\sum\limits_{r = 1}^{r = 100} {\left| {{A_r}} \right|} means that there is the summation of the A1+A2+A3+..........+A100\left| {{A_1}} \right| + \left| {{A_2}} \right| + \left| {{A_3}} \right| + .......... + \left| {{A_{100}}} \right|
So the determinant of the matrix Ar{A_r} is
\left| {{A_r}} \right| = \left| {\begin{array}{*{20}{l}} r&{r - 1} \\\ {r - 1}&r; \end{array}} \right|
Ar=r(r)(r1)(r1) r2r2+2r1 2r1 \Rightarrow \left| {{A_r}} \right| = r(r) - (r - 1)(r - 1) \\\ \Rightarrow {r^2} - {r^2} + 2r - 1 \\\ \Rightarrow 2r - 1
Now we get that Ar=2r1\left| {{A_r}} \right| = 2r - 1
Now we need to find the value of r=1r=100Ar\sum\limits_{r = 1}^{r = 100} {\left| {{A_r}} \right|}
We know that r=1nr=1+2+3+......+n=n(n+1)2\sum\limits_{r = 1}^n r = 1 + 2 + 3 + ...... + n = \dfrac{{n(n + 1)}}{2}
r=1100(2r1)\Rightarrow \sum\limits_{r = 1}^{100} {(2r - 1)}
Now on calculating we get that
2r=1100rr=11001 2(n(n+1)2)n \Rightarrow 2\sum\limits_{r = 1}^{100} r - \sum\limits_{r = 1}^{100} 1 \\\ \Rightarrow 2\left( {\dfrac{{n(n + 1)}}{2}} \right) - n
And here n=100n = 100
So we get that
r=1r=100Ar\sum\limits_{r = 1}^{r = 100} {\left| {{A_r}} \right|} =2(100(100+1)2)100=100(101)100=100(100)=104 = 2\left( {\dfrac{{100(100 + 1)}}{2}} \right) - 100 = 100(101) - 100 = 100(100) = {10^4}
But we are given that r=1r=100Ar=(10)k\sum\limits_{r = 1}^{r = 100} {\left| {{A_r}} \right|} = {\left( {\sqrt {10} } \right)^k}
So we can use its value and get
(10)k=104 10k2=104 \Rightarrow {\left( {\sqrt {10} } \right)^k} = {10^4} \\\ \Rightarrow {10^{\dfrac{k}{2}}} = {10^4}
Upon comparing we get that
k2=4 k=8 \Rightarrow \dfrac{k}{2} = 4 \\\ \Rightarrow k = 8

In this way we can get the value of kk

Note:
Here we can do it this way also as we are given that Ar=2r1\left| {{A_r}} \right| = 2r - 1 so we get that A1=1,A2=3,A3=5,A4=7 and so on 1,3,5,7,......all are in AP\left| {{A_1}} \right| = 1,\left| {{A_2}} \right| = 3,\left| {{A_3}} \right| = 5,\left| {{A_4}} \right| = 7{\text{ and so on 1,3,5,7,}}......{\text{all are in AP}}with the common difference 22
A100=199 199=a+(n1)d 199=1+(n1)2 n=100 {A_{100}} = 199 \\\ 199 = a + (n - 1)d \\\ 199 = 1 + (n - 1)2 \\\ n = 100
So we can find the sum of this AP
sum of AP=n2(a+l) =1002(1+199)=10000=104 {\text{sum of AP}} = \dfrac{n}{2}(a + l) \\\ = \dfrac{{100}}{2}(1 + 199) = 10000 = {10^4}
Again we can compare and get the same answer.