Solveeit Logo

Question

Question: Matrix A is such that \(A^{2} = 2A - I\)where I is the identity matrix. Then for \(n \geq 2,A^{n} =\...

Matrix A is such that A2=2AIA^{2} = 2A - Iwhere I is the identity matrix. Then for n2,An=n \geq 2,A^{n} =

A

nA(n1)InA - (n - 1)I

B

nAInA - I

C

2n1A(n1)I2^{n - 1}A - (n - 1)I

D

2n1AI2^{n - 1}A - I

Answer

nA(n1)InA - (n - 1)I

Explanation

Solution

We have, A2=2AIA^{2} = 2A - IA2.A=(2AI)AA^{2}.A = (2A - I)A; A3=2A2IA=2[2AI]IAA^{3} = 2A^{2} - IA = 2\lbrack 2A - I\rbrack - IAA3=3A2IA^{3} = 3A - 2I

Similarly A4=4A3IA^{4} = 4A - 3I and hence An=nA(n1)IA^{n} = nA - (n - 1)I