Solveeit Logo

Question

Question: Matrix \(A = \begin{bmatrix} 1 & 0 & - K \\ 2 & 1 & 3 \\ K & 0 & 1 \end{bmatrix}\)is invertible for...

Matrix A=[10K213K01]A = \begin{bmatrix} 1 & 0 & - K \\ 2 & 1 & 3 \\ K & 0 & 1 \end{bmatrix}is invertible for

A

K=1K = 1

B

K=1K = - 1

C

K=0K = 0

D

All real K

Answer

All real K

Explanation

Solution

For invertible, A0|A| \neq 0 i.e., 10K213K010\left| \begin{matrix} 1 & 0 & - K \\ 2 & 1 & 3 \\ K & 0 & 1 \end{matrix} \right| \neq 0

1(1)K(K)01(1) - K( - K) \neq 0A=K2+10|A| = K^{2} + 1 \neq 0, which is true for all real K .