Solveeit Logo

Question

Mathematics Question on Determinants

Matrix A=[123 115 247]A = \begin{bmatrix}1&2&3\\\ 1&1&5\\\ 2&4&7\end{bmatrix}then the value of a31A31+a32A32+a33+A33a_{31} A_{31} + a_{32} A_{32} + a_{33 } + A_{33} is

A

1

B

13

C

-1

D

-13

Answer

-1

Explanation

Solution

We have, A=[123 115 247]A = \begin{bmatrix}1&2&3\\\ 1&1&5\\\ 2&4&7\end{bmatrix} a31=2,a32=4,a33=7a_{31} =2, a_{32} = 4, a_{33} = 7and A31=23 15A_{31}=\begin{vmatrix}2&3\\\ 1&5\end{vmatrix} =103=7= 10 - 3 = 7 A32=13 15A_{32} = -\begin{vmatrix}1&3\\\ 1&5\end{vmatrix} =(53)=2= -\left(5 - 3\right) = -2 A33=12 11A_{33} =\begin{vmatrix}1&2\\\ 1&1\end{vmatrix} =12=1= 1 - 2 = -1 a31A31+a32A32+a33A33\therefore a_{31} A_{31} + a_{32}A_{32} + a_{33} A_{33} =2(7)+4(2)+7(1) = 2(7) + 4(-2) + 7(-1) =1487=1 = 14 - 8 - 7 = -1