Solveeit Logo

Question

Question: Let A = $[a_{ij}]$ $(1 \leq i, j \leq 3)$ be a 3 × 3 matrix and B = $[b_{ij}]$ $(1 \leq i,j \leq 3)$...

Let A = [aij][a_{ij}] (1i,j3)(1 \leq i, j \leq 3) be a 3 × 3 matrix and B = [bij][b_{ij}] (1i,j3)(1 \leq i,j \leq 3) be a 3x3 matrix such that bij=k=13aikajkb_{ij} = \sum_{k=1}^{3} a_{ik} \cdot a_{jk}.

If det. A = 4, then the value of det. B is

A

0

B

4

C

8

D

16

Answer

16

Explanation

Solution

The matrix B is defined by its elements bij=k=13aikajkb_{ij} = \sum_{k=1}^{3} a_{ik} a_{jk}. This summation is recognized as the element in the ii-th row and jj-th column of the matrix product AATA A^T. Thus, B=AATB = A A^T. The determinant of B is then det(AATA A^T). Using the property det(XY) = det(X)det(Y) and det(ATA^T) = det(A), we get det(B) = det(A)det(ATA^T) = det(A)det(A) = (det(A))^2. Given det(A) = 4, det(B) = 42=164^2 = 16.